Towards a consistent modeling of protein thermodynamic and kinetic cooperativity: how applicable is the transition state picture to folding and unfolding?

نویسندگان

  • Hüseyin Kaya
  • Hue Sun Chan
چکیده

To what extent do general features of folding/unfolding kinetics of small globular proteins follow from their thermodynamic properties? To address this question, we investigate a new simplified protein chain model that embodies a cooperative interplay between local conformational preferences and hydrophobic burial. The present four-helix-bundle 55mer model exhibits protein-like calorimetric two-state cooperativity. It rationalizes native-state hydrogen exchange observations. Our analysis indicates that a coherent, self-consistent physical account of both the thermodynamic and kinetic properties of the model leads naturally to the concept of a native state ensemble that encompasses considerable conformational fluctuations. Such a multiple-conformation native state is seen to involve conformational states similar to those revealed by native-state hydrogen exchange. Many of these conformational states are predicted to lie below native baselines commonly used in interpreting calorimetric data. Folding and unfolding kinetics are studied under a range of intrachain interaction strengths as in experimental chevron plots. Kinetically determined transition midpoints match well with their thermodynamic counterparts. Kinetic relaxations are found to be essentially single-exponential over an extended range of model interaction strengths. This includes the entire unfolding regime and a significant part of a folding regime with a chevron rollover, as has been observed for real proteins that fold with non-two-state kinetics. The transition state picture of protein folding and unfolding is evaluated by comparing thermodynamic free energy profiles with actual kinetic rates. These analyses suggest that some chevron rollovers may arise from an internal frictional effect that increasingly impedes chain motions with more native conditions, rather than being caused by discrete deadtime folding intermediates or shifts of the transition state peak as previously posited.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamic Studies on the Interaction of Histone H2B with Dodecyl Trimethyl Ammonium Bromide

The interaction of histone H2B and dodecyl trimethyl ammonium bromide (DTAB) was studies via equilibrium dialysis method at two different temperatures, at pH 6.4 in phosphate buffer. The binding data were used to obtain the Gibbs free energy of interaction, which is interpreted in terms of a theoretical model based on the Wyman binding potential. The data were then used to obtain...

متن کامل

How cooperative are protein folding and unfolding transitions?

A thermodynamically and kinetically simple picture of protein folding envisages only two states, native (N) and unfolded (U), separated by a single activation free energy barrier, and interconverting by cooperative two-state transitions. The folding/unfolding transitions of many proteins occur, however, in multiple discrete steps associated with the formation of intermediates, which is indicati...

متن کامل

Solvation effects and driving forces for protein thermodynamic and kinetic cooperativity: how adequate is native-centric topological modeling?

What energetic and solvation effects underlie the remarkable two-state thermodynamics and folding/unfolding kinetics of small single-domain proteins? To address this question, we investigate the folding and unfolding of a hierarchy of continuum Langevin dynamics models of chymotrypsin inhibitor 2. We find that residue-based additive Gō-like contact energies, although native-centric, are by them...

متن کامل

Simple two-state protein folding kinetics requires near-levinthal thermodynamic cooperativity.

Simple two-state folding kinetics of many small single-domain proteins are characterized by chevron plots with linear folding and unfolding arms consistent with an apparent two-state description of equilibrium thermodynamics. This phenomenon is hereby recognized as a nontrivial heteropolymer property capable of providing fundamental insight into protein energetics. Many current protein chain mo...

متن کامل

Protein Folding Mechanism of the Dimeric AmphiphysinII/Bin1 N-BAR Domain

The human AmphyphisinII/Bin1 N-BAR domain belongs to the BAR domain superfamily, whose members sense and generate membrane curvatures. The N-BAR domain is a 57 kDa homodimeric protein comprising a six helix bundle. Here we report the protein folding mechanism of this protein as a representative of this protein superfamily. The concentration dependent thermodynamic stability was studied by urea ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 315 4  شماره 

صفحات  -

تاریخ انتشار 2002