Data Mining using Advanced Ant Colony Optimization Algorithm and Application to Bankruptcy Prediction
نویسندگان
چکیده
Ant Colony Optimization (ACO) is gaining popularity as data mining technique in the domain of Swarm Intelligence for its simple, accurate and comprehensive nature of classification. In this paper the authors propose a novel advanced version of the original ant colony based miner (Ant-Miner) in order to extract classification rules from data. They call this Advanced ACO-Miner (ADACOM). The main goal of ADACOM is to explore the flexibility of using a different knowledge extraction heuristic approach viz. Gini’s Index to increase the predictive accuracy and the simplicity of the rules extracted. Further, the authors increase the information and the prediction level of the set of rules extracted by dynamically changing specific parameters. Simulations are performed with ADACOM on a few benchmark datasets Wine, WBC (Wisconsin Breast Cancer) and Iris from UCI (University of California at Irvine) data repository and compared with Ant-Miner (Parpinelli, Lopes, & Freitas, 2002), Ant-Miner2 (Liu, Abbass, & McKay, 2002), Ant-Miner3 (Liu, Abbass, & McKay, 2003), Ant-Miner+ (Martens, De Backer, Haesen, Vanthienen, Snoeck, & Baesens, 2007) and C4.5 (Quinlan, 1993). The results show that ADACOM outperforms the above mentioned algorithms in terms of predictive accuracy, simplicity of rules, sensitivity, specificity and AUC values (area under ROC curve). In addition, the ADACOM is also employed to extract rules from bank datasets (UK, US, Spanish and Turkish) for bankruptcy prediction and the results are compared with that obtained by Ant-Miner. Again ADACOM yielded better results and is proven to be the better choice for solving bankruptcy prediction problems in banks Vishal Arora Indian Institute of Technology Delhi, India Vadlamani Ravi Institute for Development and Research in Banking Technology, India DOI: 10.4018/978-1-4666-6268-1.ch081
منابع مشابه
An Analysis on Qualitative Bankruptcy Prediction Rules using Ant-Miner
Qualitative bankruptcy prediction rules represent experts' problem-solving knowledge to predict qualitative bankruptcy. The objective of this research is predicting qualitative bankruptcy using antminer algorithm. Qualitative data are subjective and more difficult to measure. This approach uses qualitative risk factors which include fourteen internal risk factors and sixty eight external risk f...
متن کاملHybrid ANFIS with ant colony optimization algorithm for prediction of shear wave velocity from a carbonate reservoir in Iran
Shear wave velocity (Vs) data are key information for petrophysical, geophysical and geomechanical studies. Although compressional wave velocity (Vp) measurements exist in almost all wells, shear wave velocity is not recorded for most of elderly wells due to lack of technologic tools. Furthermore, measurement of shear wave velocity is to some extent costly. This study proposes a novel methodolo...
متن کاملAnt colony algorithm as a high-performance method in resource estimation using LVA field; A case study: Choghart Iron ore deposit
Kriging is an advanced geostatistical procedure that generates an estimated surface or 3D model from a scattered set of points. This method can be used for estimating resources using a grid of sampled boreholes. However, conventional ordinary kriging (OK) is unable to take locally varying anisotropy (LVA) into account. A numerical approach has been presented that generates an LVA field by calcu...
متن کاملAn ant colony optimisation and Nelder-Mead simplex hybrid algorithm for training neural networks: an application to bankruptcy prediction in banks
and Keywords
متن کاملNoisy images edge detection: Ant colony optimization algorithm
The edges of an image define the image boundary. When the image is noisy, it does not become easy to identify the edges. Therefore, a method requests to be developed that can identify edges clearly in a noisy image. Many methods have been proposed earlier using filters, transforms and wavelets with Ant colony optimization (ACO) that detect edges. We here used ACO for edge detection of noisy ima...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJISSC
دوره 4 شماره
صفحات -
تاریخ انتشار 2013