Piernik Mhd Code — a Multi – Fluid , Non – Ideal Extension of the Relaxing – Tvd Scheme ( I )

نویسندگان

  • Kacper Kowalik
  • Dominik Wóltański
چکیده

We present a new multi–fluid, grid MHD code PIERNIK, which is based on the Relaxing TVD scheme. The original scheme has been extended by an addition of dynamically independent, but interacting fluids: dust and a diffusive cosmic ray gas, described within the fluid approximation, with an option to add other fluids in an easy way. The code has been equipped with shearing–box boundary conditions, and a selfgravity module, Ohmic resistivity module, as well as other facilities which are useful in astrophysical fluid–dynamical simulations. The code is parallelized by means of the MPI library. In this paper we shortly introduce basic elements of the Relaxing TVD MHD algorithm, following Trac & Pen (2003) and Pen et al. (2003), and then focus on the conservative implementation of the shearing box model, constructed with the aid of the Masset’s (2000) method. We present results of a test example of a formation of a gravitationally bounded object (planet) in a self–gravitating and differentially rotating fluid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Piernik Mhd Code — a Multi–fluid, Non–ideal Extension of the Relaxing–tvd Scheme (ii)

We present a new multi–fluid, grid MHD code PIERNIK, which is based on the Relaxing TVD scheme (Jin and Xin, 1995). The original scheme (see Trac & Pen (2003) and Pen et al. (2003)) has been extended by an addition of dynamically independent, but interacting fluids: dust and a diffusive cosmic ray gas, described within the fluid approximation, with an option to add other fluids in an easy way. ...

متن کامل

A new MHD code with adaptive mesh refinement and parallelization for astrophysics

A new code, named MAP, is written in FORTRAN language for magnetohydrodynamics (MHD) calculation with the adaptive mesh refinement (AMR) and Message Passing Interface (MPI) parallelization. There are several optional numerical schemes for computing the MHD part, namely, modified Mac Cormack Scheme (MMC), Lax-Fridrichs scheme (LF) and weighted essentially non-oscillatory (WENO) scheme. All of th...

متن کامل

A Primer on Eulerian Computational Fluid Dynamics for Astrophysics

We present a pedagogical review of some of the methods employed in Eulerian computational fluid dynamics (CFD). Fluid mechanics is governed by the Euler equations, which are conservation laws for mass, momentum, and energy. The standard approach to Eulerian CFD is to divide space into finite volumes or cells and store the cell-averaged values of conserved hydro quantities. The integral Euler eq...

متن کامل

Numerical Magnetohydrodynamics in Astrophysics: Algorithm and Tests for One-Dimensional Flow

We describe a numerical code to solve the equations for ideal magnetohydrodynamics (MHD). It is based on an explicit finite difference scheme on an Eulerian grid, called the Total Variation Diminishing (TVD) scheme, which is a second-order-accurate extension of the Roe-type upwind scheme. We also describe a nonlinear Riemann solver for ideal MHD, which includes rarefactions as well as shocks an...

متن کامل

A High Order Godunov Scheme with Constrained Transport and Adaptive Mesh Refinement for Astrophysical MHD

Aims. In this paper, we present a new method to perform numerical simulations of astrophysical MHD flows using the Adaptive Mesh Refinement framework and Constrained Transport. Methods. The algorithm is based on a previous work in which the MUSCL–Hancock scheme was used to evolve the induction equation. In this paper, we detail the extension of this scheme to the full MHD equations and discuss ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008