Photoelectrocatalytic oxidation of methyl orange on TiO2 nanotubular anode using a flowcell

نویسندگان

  • María José Martín de Vidales
  • Cristina Sáez
  • Pablo Cañizares
  • Frank C. Walsh
  • Christiane de Arruda Rodrigues
چکیده

Methyl orange from water was removed by photocatalytic anodic oxidation method using a titanium dioxide array surface. The coating was prepared by anodising a titanium plate using NH4F as electrolyte followed by heat treatment to render a photocatalytic surface under UV light. SEM imaging showed that the array coating consisted of closely spaced 1 m long, 0.1 m internal diameter tubes perpendicular to the titanium plate. The aqueous solution of methyl orange was circulated through a rectangular channel flow cell containing the coated anode and the effect of electrolyte flow rate and applied potential on the oxidation rate and efficiency were evaluated. At higher mean linear flow rates, the efficiency of the oxidation process improved, indicating a mass transport controlled process. At more positive applied potentials the TiO2 structure deteriorated resulted in lower oxidation efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of Highly Uniform Platinum and Palladium Nanoparticle Decoration on TiO2 Nanotube Arrays: An Efficient Anode to the Electro-Oxidation of Alcohols

We explore electro-catalytic properties of a system consisting of platinum and palladium nanoparticles dispersed over a nanotubular self-organized TiO2 matrix. These electrodes prepared by electroess and microemulsion of palladium and palladium nanoparticles on to TiO2 nanotubes, respectively. Titanium oxide nanotubes were fabricated by anodizing titanium foil in ethylene glycol (EG) fluoride-c...

متن کامل

Optimization of the photoelectrocatalytic oxidation of landfill leachate using copper and nitrate co-doped TiO2 (Ti) by response surface methodology

In this paper, a statistically-based experimental design with response surface methodology (RSM) was employed to examine the effects of functional conditions on the photoelectrocatalytic oxidation of landfill leachate using a Cu/N co-doped TiO2 (Ti) electrode. The experimental design method was applied to response surface modeling and the optimization of the operational parameters of the photoe...

متن کامل

Efficiently Visible-Light Driven Photoelectrocatalytic Oxidation of As(III) at Low Positive Biasing Using Pt/TiO2 Nanotube Electrode

A constant current deposition method was selected to load highly dispersed Pt nanoparticles on TiO2 nanotubes in this paper, to extend the excited spectrum range of TiO2-based photocatalysts to visible light. The morphology, elemental composition, and light absorption capability of as-obtained Pt/TiO2 nanotubes electrodes were characterized by FE-SEM, energy dispersive spectrometer (EDS), X-ray...

متن کامل

A strategy for degradation of 2,5-dichlorophenol using its photoelectrocatalytic oxidation on the TiO2/Ti thin film electrode

In this work, the photoelectrocatalytic (PEC) degradation of 2,5-dichlorophenol can be used for its removal from aqueous solution. To study this activity, a TiO2 thin film modified titanium sheet (TiO2/Ti) was fabricated by anodizing Ti plates using a two electrode system under the constant bias voltage of 20 V for 20 min in a solution of 0.2% (v/v) HF followed by calcinat...

متن کامل

Synthesis, structural characterization and catalytic activity of TiO2/Al2O3 photo-composite

In recent years, the effects of heterogeneous catalysts for the oxidation of organic and inorganic pollutants in industrial wastewaters are spread. Traditionally, these reactions are usually carried out using suspensions of photo-catalysts such as TiO2. A chemical method including TiCl4, Al(NO3)3, ethanol amine, ethyl acetoacetate and aqueous ammonia were used for the fabrication of TiO2-Al2O3 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015