Plant N-glycan processing enzymes employ different targeting mechanisms for their spatial arrangement along the secretory pathway.

نویسندگان

  • Claude Saint-Jore-Dupas
  • Andreas Nebenführ
  • Aurélia Boulaflous
  • Marie-Laure Follet-Gueye
  • Carole Plasson
  • Chris Hawes
  • Azeddine Driouich
  • Loïc Faye
  • Véronique Gomord
چکیده

The processing of N-linked oligosaccharides in the secretory pathway requires the sequential action of a number of glycosidases and glycosyltransferases. We studied the spatial distribution of several type II membrane-bound enzymes from Glycine max, Arabidopsis thaliana, and Nicotiana tabacum. Glucosidase I (GCSI) localized to the endoplasmic reticulum (ER), alpha-1,2 mannosidase I (ManI) and N-acetylglucosaminyltransferase I (GNTI) both targeted to the ER and Golgi, and beta-1,2 xylosyltransferase localized exclusively to Golgi stacks, corresponding to the order of expected function. ManI deletion constructs revealed that the ManI transmembrane domain (TMD) contains all necessary targeting information. Likewise, GNTI truncations showed that this could apply to other type II enzymes. A green fluorescent protein chimera with ManI TMD, lengthened by duplicating its last seven amino acids, localized exclusively to the Golgi and colocalized with a trans-Golgi marker (ST52-mRFP), suggesting roles for protein-lipid interactions in ManI targeting. However, the TMD lengths of other plant glycosylation enzymes indicate that this mechanism cannot apply to all enzymes in the pathway. In fact, removal of the first 11 amino acids of the GCSI cytoplasmic tail resulted in relocalization from the ER to the Golgi, suggesting a targeting mechanism relying on protein-protein interactions. We conclude that the localization of N-glycan processing enzymes corresponds to an assembly line in the early secretory pathway and depends on both TMD length and signals in the cytoplasmic tail.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arginine/Lysine Residues in the Cytoplasmic Tail Promote ER Export of Plant Glycosylation Enzymes

Plant N-glycan processing enzymes are arranged along the early secretory pathway, forming an assembly line to facilitate the step-by-step modification of oligosaccharides on glycoproteins. Thus, these enzymes provide excellent tools to study signals and mechanisms, promoting their localization and retention in the endoplasmic reticulum (ER) and Golgi apparatus. Herein, we focused on a detailed ...

متن کامل

XBP1s Links the Unfolded Protein Response to the Molecular Architecture of Mature N-Glycans.

The molecular architecture of the mature N-glycome is dynamic, with consequences for both normal and pathologic processes. Elucidating cellular mechanisms that modulate the N-linked glycome is, therefore, crucial. The unfolded protein response (UPR) is classically responsible for maintaining proteostasis in the secretory pathway by defining levels of chaperones and quality control proteins. Her...

متن کامل

Sub-Compartmental Organization of Golgi-Resident N-Glycan Processing Enzymes in Plants

In all eukaryotes, the Golgi apparatus is the main site of protein glycosylation. It is widely accepted that the glycosidases and glycosyltransferases involved in N-glycan processing are found concentrated within the Golgi stack where they provide their function. This means that enzymes catalyzing early steps in the processing pathway are located mainly at the cis-side, whereas late-acting enzy...

متن کامل

Mutations in Four Glycosyl Hydrolases Reveal a Highly Coordinated Pathway for Rhodopsin Biosynthesis and N-Glycan Trimming in Drosophila melanogaster

As newly synthesized glycoproteins move through the secretory pathway, the asparagine-linked glycan (N-glycan) undergoes extensive modifications involving the sequential removal and addition of sugar residues. These modifications are critical for the proper assembly, quality control and transport of glycoproteins during biosynthesis. The importance of N-glycosylation is illustrated by a growing...

متن کامل

Time-resolved fluorescence imaging reveals differential interactions of N-glycan processing enzymes across the Golgi stack in planta.

N-Glycan processing is one of the most important cellular protein modifications in plants and as such is essential for plant development and defense mechanisms. The accuracy of Golgi-located processing steps is governed by the strict intra-Golgi localization of sequentially acting glycosidases and glycosyltransferases. Their differential distribution goes hand in hand with the compartmentalizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 18 11  شماره 

صفحات  -

تاریخ انتشار 2006