Identification of Wheat Inflorescence Development-Related Genes Using a Comparative Transcriptomics Approach

نویسندگان

  • Lingjie Ma
  • Sheng-Wei Ma
  • Qingyan Deng
  • Yang Yuan
  • Zhaoyan Wei
  • Haiyan Jia
  • Zhengqiang Ma
چکیده

Inflorescence represents the highly specialized plant tissue producing the grains. Although key genes regulating flower initiation and development are conserved, the mechanism regulating fertility is still not well explained. To identify genes and gene network underlying inflorescence morphology and fertility of bread wheat, expressed sequence tags (ESTs) from different tissues were analyzed using a comparative transcriptomics approach. Based on statistical comparison of EST frequencies of individual genes in EST pools representing different tissues and verification with RT-PCR and RNA-seq data, 170 genes of 59 gene sets predominantly expressed in the inflorescence were obtained. Nearly one-third of the gene sets displayed differentiated expression profiles in terms of their subgenome orthologs. The identified genes, most of which were predominantly expressed in anthers, encode proteins involved in wheat floral identity determination, anther and pollen development, pollen-pistil interaction, and others. Particularly, 25 annotated gene sets are associated with pollen wall formation, of which 18 encode enzymes or proteins participating in lipid metabolic pathway, including fatty acid ω-hydroxylation, alkane and fatty alcohol biosynthesis, and glycerophospholipid metabolism. We showed that the comparative transcriptomics approach was effective in identifying genes for reproductive development and found that lipid metabolism was particularly active in wheat anthers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptome Association Identifies Regulators of Wheat Spike Architecture.

The architecture of wheat (Triticum aestivum) inflorescence and its complexity is among the most important agronomic traits that influence yield. For example, wheat spikes vary considerably in the number of spikelets, which are specialized reproductive branches, and the number of florets, which are spikelet branches that produce seeds. The large and repetitive nature of the three homologous and...

متن کامل

Transcriptome Profiling of Wheat Inflorescence Development from Spikelet Initiation to Floral Patterning Identified Stage-Specific Regulatory Genes.

Early reproductive development in cereals is crucial for final grain number per spike and hence the yield potential of the crop. To date, however, no systematic analyses of gene expression profiles during this important process have been conducted for common wheat (Triticum aestivum). Here, we studied the transcriptome profiles at four stages of early wheat reproductive development, from spikel...

متن کامل

Dynamic patterns of expression for genes regulating cytokinin metabolism and signaling during rice inflorescence development

Inflorescence development in cereals, including such important crops as rice, maize, and wheat, directly affects grain number and size and is a key determinant of yield. Cytokinin regulates meristem size and activity and, as a result, has profound effects on inflorescence development and architecture. To clarify the role of cytokinin action in inflorescence development, we used the NanoString n...

متن کامل

Chloroplast Ubiquitin E3 Ligase SP1: Does It Really Function in Peroxisomes?

October 2017 d Vol. 175 d No. 2 On the Cover: The architecture of wheat inflorescence and its complexity are among the most important agronomic traits that influence yield. Wheat spikes vary considerably in the number of spikelets, which are specialized reproductive branches. The large and repetitive nature of the three homologous and highly similar subgenomes of wheat has impeded attempts at u...

متن کامل

Understanding Molecular Mechanisms of Durable and Non-durable Resistance to Stripe Rust in Wheat Using a Transcriptomics Approach

Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici, continues to cause severe damage worldwide. Durable resistance is necessary for sustainable control of the disease. High-temperature adult-plant (HTAP) resistance, which expresses when the weather becomes warm and plants grow older, has been demonstrated to be durable. We conducted numerous studies to understand the molecular ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2018  شماره 

صفحات  -

تاریخ انتشار 2018