Continuous Packed Bed Reactor with Immobilized -Galactosidase for Production of Galactooligosaccharides (GOS)

نویسندگان

  • Barbara Rodriguez-Colinas
  • Lucia Fernandez-Arrojo
  • Paloma Santos-Moriano
  • Antonio O. Ballesteros
  • David D. Boehr
چکیده

The β-galactosidase from Bacillus circulans was covalently attached to aldehyde-activated (glyoxal) agarose beads and assayed for the continuous production of galactooligosaccharides (GOS) in a packed-bed reactor (PBR). The immobilization was fast (1 h) and the activity of the resulting biocatalyst was 97.4 U/g measured with o-nitrophenyl-β-D-galactopyranoside (ONPG). The biocatalyst showed excellent operational stability in 14 successive 20 min reaction cycles at 45 ◦C in a batch reactor. A continuous process for GOS synthesis was operated for 213 h at 0.2 mL/min and 45 ◦C using 100 g/L of lactose as a feed solution. The efficiency of the PBR slightly decreased with time; however, the maximum GOS concentration (24.2 g/L) was obtained after 48 h of operation, which corresponded to 48.6% lactose conversion and thus to maximum transgalactosylation activity. HPAEC-PAD analysis showed that the two major GOS were the trisaccharide Gal-β(1→4)-Gal-β(1→4)-Glc and the tetrasaccharide Gal-β(1→4)-Gal-β(1→4)-Gal-β(1→4)-Glc. The PBR was also assessed in the production of GOS from milk as a feed solution. The stability of the bioreactor was satisfactory during the first 8 h of operation; after that, a decrease in the flow rate was observed, probably due to partial clogging of the column. This work represents a step forward in the continuous production of GOS employing fixed-bed reactors with immobilized β-galactosidases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Galacto-oligosaccharides synthesis from lactose and whey by β-galactosidase immobilized in PVA.

The synthesis of galacto-oligosaccharides (GOS) by β-galactosidase immobilized in both polyvinyl alcohol (PVA) lenses and sol-gel carriers was studied and compared with the performance of the free enzyme. PVA-immobilized β-galactosidase retained 95 % of the initial activity after seven repeated uses and retained 51 % of the initial activity after 3 months of storage, while sol-gel-immobilized β...

متن کامل

Citronellyl Butyrate Synthesis in Non-Conventional Media Using Packed-Bed Immobilized Candida Rugosa Lipase Reactor

The synthesis of citronellyl butyrate by direct esterification reaction catalyzed by immobilized lipase from Candida rugosa was studied in a continuous packed bed reactor using n-hexane as organic solvent. Parameters such as residence time, temperature, and pH were examined. The optimum conversion was obtained at a flow rate of 1 ml/min (residence time 8 min), temperature of 50 °C, and pH 7.5. ...

متن کامل

Production of Galactooligosaccharides Using β-Galactosidase Immobilized on Chitosan-Coated Magnetic Nanoparticles with Tris(hydroxymethyl)phosphine as an Optional Coupling Agent

β-Galactosidase was immobilized on chitosan-coated magnetic Fe3O4 nanoparticles and was used to produce galactooligosaccharides (GOS) from lactose. Immobilized enzyme was prepared with or without the coupling agent, tris(hydroxymethyl)phosphine (THP). The two immobilized systems and the free enzyme achieved their maximum activity at pH 6.0 with an optimal temperature of 50 °C. The immobilized e...

متن کامل

Continuous production of extracellular L-glutaminase by Ca-alginate-immobilized marine Beauveria bassiana BTMF S-10 in packed-bed reactor.

L-Glutamine amidohydrolase (L-glutaminase, EC 3.5.1.2) is a therapeutically and industrially important enzyme. Because it is a potent antileukemic agent and a flavor-enhancing agent used in the food industry, many researchers have focused their attention on L-glutaminase. In this article, we report the continuous production of extracellular L-glutaminase by the marine fungus Beauveria bassiana ...

متن کامل

Investigating the Batch and Continuous Transesterification of Linseed Oil by Using a Alkaline Heterogeneous Catalyst in a Packed Bed Reactor

Both the continuous and batch transesterification of linseed oil were examined in order to maximize the fatty acid methyl esters (FAME) yield. The continuous process was conducted in a packed bed reactor using calcium oxide as a heterogeneous catalyst. In addition, the impact of two variables, namely the molar ratio of methanol to oil and the flow rate (ml/min), on the FAME yield were stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016