Single amino acid substitutions in the HsdR subunit of the type IB restriction enzyme EcoAI uncouple the DNA translocation and DNA cleavage activities of the enzyme
نویسندگان
چکیده
Type I restriction enzymes bind to specific DNA sequences but subsequently translocate non-specific DNA past the complex in a reaction coupled to ATP hydrolysis and cleave DNA at any barrier that can halt the translocation process. The restriction subunit of these enzymes, HsdR, contains a cluster of seven amino acid sequence motifs typical of helicase superfamily II, that are believed to be relevant to the ATP-dependent DNA translocation. Alignment of all available HsdR sequences reveals an additional conserved region at the protein N-terminus with a consensus sequence reminiscent of the P-D.(D/E)-X-K catalytic motif of many type II restriction enzymes. To investigate the role of these conserved residues, we have produced mutants of the type IB restriction enzyme Eco AI. We have found that single alanine substitutions at Asp-61, Glu-76 and Lys-78 residues of the HsdR subunit abolished the enzyme's restriction activity but had no effect on its ATPase and DNA translocation activities, suggesting that these residues are part of the active site for DNA cleavage.
منابع مشابه
Recycling of protein subunits during DNA translocation and cleavage by Type I restriction-modification enzymes
The Type I restriction-modification enzymes comprise three protein subunits; HsdS and HsdM that form a methyltransferase (MTase) and HsdR that associates with the MTase and catalyses Adenosine-5'-triphosphate (ATP)-dependent DNA translocation and cleavage. Here, we examine whether the MTase and HsdR components can 'turnover' in vitro, i.e. whether they can catalyse translocation and cleavage ev...
متن کاملFunctional Coupling of Duplex Translocation to DNA Cleavage in a Type I Restriction Enzyme
Type I restriction-modification enzymes are multifunctional heteromeric complexes with DNA cleavage and ATP-dependent DNA translocation activities located on motor subunit HsdR. Functional coupling of DNA cleavage and translocation is a hallmark of the Type I restriction systems that is consistent with their proposed role in horizontal gene transfer. DNA cleavage occurs at nonspecific sites dis...
متن کاملOn the DNA cleavage mechanism of Type I restriction enzymes
Although the DNA cleavage mechanism of Type I restriction-modification enzymes has been extensively studied, the mode of cleavage remains elusive. In this work, DNA ends produced by EcoKI, EcoAI and EcoR124I, members of the Type IA, IB and IC families, respectively, have been characterized by cloning and sequencing restriction products from the reactions with a plasmid DNA substrate containing ...
متن کاملThe fragment structure of a putative HsdR subunit of a type I restriction enzyme from Vibrio vulnificus YJ016: implications for DNA restriction and translocation activity
Among four types of bacterial restriction enzymes that cleave a foreign DNA depending on its methylation status, type I enzymes composed of three subunits are interesting because of their unique DNA cleavage and translocation mechanisms performed by the restriction subunit (HsdR). The elucidated N-terminal fragment structure of a putative HsdR subunit from Vibrio vulnificus YJ016 reveals three ...
متن کاملDNA translocation blockage, a general mechanism of cleavage site selection by type I restriction enzymes.
Type I restriction enzymes bind to a specific DNA sequence and subsequently translocate DNA past the complex to reach a non-specific cleavage site. We have examined several potential blocks to DNA translocation, such as positive supercoiling or a Holliday junction, for their ability to trigger DNA cleavage by type I restriction enzymes. Introduction of positive supercoiling into plasmid DNA did...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 27 13 شماره
صفحات -
تاریخ انتشار 1999