DNA Methylation Mediates Persistent Epileptiform Activity In Vitro and In Vivo
نویسندگان
چکیده
Epilepsy is a chronic brain disorder involving recurring seizures often precipitated by an earlier neuronal insult. The mechanisms that link the transient neuronal insult to the lasting state of epilepsy are unknown. Here we tested the possible role of DNA methylation in mediating long-term induction of epileptiform activity by transient kainic acid exposure using in vitro and in vivo rodent models. We analyzed changes in the gria2 gene, which encodes for the GluA2 subunit of the ionotropic glutamate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid receptor and is well documented to play a role in epilepsy. We show that kainic acid exposure for two hours to mouse hippocampal slices triggers methylation of a 5' regulatory region of the gria2 gene. Increase in methylation persists one week after removal of the drug, with concurrent suppression of gria2 mRNA expression levels. The degree of kainic acid-induced hypermethylation of gria2 5' region varies between individual slices and correlates with the changes in excitability induced by kainic acid. In a rat in vivo model of post kainic acid-induced epilepsy, we show similar hypermethylation of the 5' region of gria2. Inter-individual variations in gria2 methylation, correlate with the frequency and intensity of seizures among epileptic rats. Luciferase reporter assays support a regulatory role for methylation of gria2 5' region. Inhibition of DNA methylation by RG108 blocked kainic acid-induced hypermethylation of gria2 5' region in hippocampal slice cultures and bursting activity. Our results suggest that DNA methylation of such genes as gria2 mediates persistent epileptiform activity and inter-individual differences in the epileptic response to neuronal insult and that pharmacological agents that block DNA methylation inhibit epileptiform activity raising the prospect of DNA methylation inhibitors in epilepsy therapeutics.
منابع مشابه
O-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development
Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...
متن کاملP-128: The Effect of DNA Methyl Transferase1 Inhibitor (RG108) on DNA Methylation Pattern of Cloned Mouse Embryos
Background: In somatic cell nuclear transfer (SCNT) method of cloning, transferred nucleus should be dedifferentiated from differentiated state to embryonic state. Molecular analysis showed that the reprogramming in the transferred nucleus was incomplete and cloned embryos have epigenetic abnormalities such as high DNA methylations levels. Since methylation in pre-implantation embryos has a cri...
متن کاملProconvulsive effect of hydrochlorothiazide in an in vitro rat seizure model
Objective(s):Protective effects of diuretics, particularly of hydrochlorothiazide (HCT), for the development of seizure attacksepilepsy have been described in vivo. However, itsthe mechanism of action of HCT is unknownneeds to be elucidated. Materials and Methods: Extracellular field potentials were recorded from the CA1- and CA3-subfields of the hippocampus of rats. Epileptiform discharges wer...
متن کاملBDNF-TrkB signaling pathway mediates the induction of epileptiform activity induced by a convulsant drug cyclothiazide.
Brain-derived neurotrophic factor (BDNF) and its receptor TrkB play an important function in neuronal development and synaptic plasticity. Recently we have established that cyclothiazide (CTZ) is a novel convulsant drug inducing robust epileptiform activity in hippocampal neurons both in vitro and in vivo. However, the molecular mechanisms underlying such convulsant action of CTZ are unknown. H...
متن کاملThein vitro and in vivo Effect of Clinoptiloliteon Decreasing of Copper Ion and DNA Damage of Anodonta Cygnea
The ability of natural zeolite (Clinoptilolite) to remove copper from aqueous ecosystem was studied in real and laboratory conditions. Fresh water mussels (Anodonta Cygnea) of different sizes were Exposed to copper (150, 350, 450 µgl-1) for 10 days. Copper exposure induced DNA damage in the haemolymph cells of Anodonta of all sizes. In connection with real samples, the amount of damage and even...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013