Strong Solutions and Inviscid Limit for Boussinesq System with Partial Viscosity
نویسندگان
چکیده
Abstract. We consider the convection problem of a fluid with viscosity depending on temperature in either a bounded or an exterior domain Ω⊂R ,N =2,3. It is assumed that the temperature is transported without thermal conductance (dissipation) by the velocity field which is described by the Navier-Stokes flow. This model is commonly called the Boussinesq system with partial viscosity. In this paper we prove the existence and uniqueness of strong solutions for the Boussinesq system
منابع مشابه
Global Well-posedness for the 2d Boussinesq System without Heat Diffusion and with Either Anisotropic Viscosity or Inviscid Voigt-α Regularization
We establish global existence and uniqueness theorems for the two-dimensional non-diffusive Boussinesq system with viscosity only in the horizontal direction, which arises in Ocean dynamics. This work improves the global well-posedness results established recently by R. Danchin and M. Paicu for the Boussinesq system with anisotropic viscosity and zero diffusion. Although we follow some of their...
متن کاملSharp Decay Estimates for an Anisotropic Linear Semigroup and Applications to the Sqg and Inviscid Boussinesq Systems
At the core of this article is an improved, sharp dispersive estimate for the anisotropic linear semigroup e1 arising in both the study of the dispersive SQG equation and the inviscid Boussinesq system. We combine the decay estimate with a blow-up criterion to show how dispersion leads to long-time existence of solutions to the dispersive SQG equation, improving the results obtained using hyper...
متن کاملWell-posedness and Inviscid Limits of the Boussinesq Equations with Fractional Laplacian Dissipation
This paper is concerned with the global well-posedness and inviscid limits of several systems of Boussinesq equations with fractional dissipation. Three main results are proven. The first result assesses the global regularity of two systems of equations close to the critical 2D Boussinesq equations. This is achieved by examining their inviscid limits. The second result relates the global regula...
متن کاملرفتار سالیتونی در مدلهای ناپایدار باروکیلینیک
Here we concern ouraelves with the derivation of a system of evolution equations for slowly varying amplitude of a baroclinic wave packet. The self-induced transparency, Sine-Gordon, and nonlinear Schrodinger equations, all of which possess soliton solutions, each arise for different inviscid limits. The presence of viscosity, however, alters the form of the evolution equations and changes th...
متن کاملGlobal regularity for the 2D Boussinesq equations with partial viscosity terms
In this paper we prove the global in time regularity for the 2D Boussinesq system with either the zero diffusivity or the zero viscosity. We also prove that as diffusivity(viscosity) goes to zero the solutions of the fully viscous equations converges stongly to those of zero diffusion(viscosity) equations. Our result for the zero diffusion system, in particular, solves the Problem no. 3 posed b...
متن کامل