Brain white matter structure and COMT gene are linked to second-language learning in adults.
نویسندگان
چکیده
Adult human brains retain the capacity to undergo tissue reorganization during second-language learning. Brain-imaging studies show a relationship between neuroanatomical properties and learning for adults exposed to a second language. However, the role of genetic factors in this relationship has not been investigated. The goal of the current study was twofold: (i) to characterize the relationship between brain white matter fiber-tract properties and second-language immersion using diffusion tensor imaging, and (ii) to determine whether polymorphisms in the catechol-O-methyltransferase (COMT) gene affect the relationship. We recruited incoming Chinese students enrolled in the University of Washington and scanned their brains one time. We measured the diffusion properties of the white matter fiber tracts and correlated them with the number of days each student had been in the immersion program at the time of the brain scan. We found that higher numbers of days in the English immersion program correlated with higher fractional anisotropy and lower radial diffusivity in the right superior longitudinal fasciculus. We show that fractional anisotropy declined once the subjects finished the immersion program. The relationship between brain white matter fiber-tract properties and immersion varied in subjects with different COMT genotypes. Subjects with the Methionine (Met)/Valine (Val) and Val/Val genotypes showed higher fractional anisotropy and lower radial diffusivity during immersion, which reversed immediately after immersion ended, whereas those with the Met/Met genotype did not show these relationships. Statistical modeling revealed that subjects' grades in the language immersion program were best predicted by fractional anisotropy and COMT genotype.
منابع مشابه
Effects of a functional COMT polymorphism on brain anatomy and cognitive function in adults with velo-cardio-facial syndrome.
BACKGROUND Velo-cardio-facial syndrome (VCFS) is associated with deletions at chromosome 22q11, abnormalities in brain anatomy and function, and schizophrenia-like psychosis. Thus it is assumed that one or more genes within the deleted region are crucial to brain development. However, relatively little is known about how genetic variation at 22q11 affects brain structure and function. One gene ...
متن کاملSex‐specific effects of COMT Val158Met polymorphism on corpus callosum structure: A whole‐brain diffusion‐weighted imaging study
BACKGROUND Genetic polymorphisms play a significant role in determining brain morphology, including white matter structure and may thus influence the development of brain functions. The main objective of this study was to examine the effect of Val158Met (rs4680) polymorphism of Catechol-O-Methyltransferase (COMT) gene on white matter connectivity in healthy adults. METHODS We used a whole-bra...
متن کاملGrammar learning in older adults is linked to white matter microstructure and functional connectivity
Age-related decline in cognitive function has been linked to alterations of white matter and functional brain connectivity. With regard to language, aging has been shown to be associated with impaired syntax processing, but the underlying structural and functional correlates are poorly understood. In the present study, we used an artificial grammar learning (AGL) task to determine the ability t...
متن کاملWhite Matter Structure Changes as Adults Learn a Second Language
Traditional models hold that the plastic reorganization of brain structures occurs mainly during childhood and adolescence, leaving adults with limited means to learn new knowledge and skills. Research within the last decade has begun to overturn this belief, documenting changes in the brain's gray and white matter as healthy adults learn simple motor and cognitive skills [Lövdén, M., Bodammer,...
متن کاملHaplotypes of catechol-O-methyltransferase modulate intelligence-related brain white matter integrity
Twin studies have indicated a common genetic origin for intelligence and for variations in brain morphology. Our previous diffusion tensor imaging studies found an association between intelligence and white matter integrity of specific brain regions or tracts. However, specific genetic determinants of the white matter integrity of these brain regions and tracts are still unclear. In this study,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 26 شماره
صفحات -
تاریخ انتشار 2016