Interval-Valued Algebras and Fuzzy Logics

نویسندگان

  • Bart Van Gasse
  • Chris Cornelis
  • Glad Deschrijver
چکیده

In this chapter, we present a propositional calculus for several intervalvalued fuzzy logics, i.e., logics having intervals as truth values. More precisely, the truth values are preferably subintervals of the unit interval. The idea behind it is that such an interval can model imprecise information. To compute the truth values of ‘p implies q’ and ‘p and q’, given the truth values of p and q, we use operations from residuated lattices. This truth-functional approach is similar to the methods developed for the well-studied fuzzy logics. Although the interpretation of the intervals as truth values expressing some kind of imprecision is a bit problematic, the purely mathematical study of the properties of interval-valued fuzzy logics and their algebraic semantics can be done without any problem. This study is the focus of this chapter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INTERVAL-VALUED FUZZY B-ALGEBRAS

In this note the notion of interval-valued fuzzy B-algebras (briefly,i-v fuzzy B-algebras), the level and strong level B-subalgebra is introduced.Then we state and prove some theorems which determine the relationshipbetween these notions and B-subalgebras. The images and inverse images ofi-v fuzzy B-subalgebras are defined, and how the homomorphic images andinverse images of i-v fuzzy B-subalge...

متن کامل

Some types of $(in,ivq)$-interval-valued fuzzy ideals of BCI algebras

In this paper, we introduce  the notions of   interval-valued and $(in,ivq)$-interval-valued fuzzy ($p$-,$q$- and $a$-) ideals    of   BCI algebras   and investigate some of their properties.   We then derive characterization theorems for these generalized interval-valued fuzzy ideals  and discuss their relationship.

متن کامل

Triangle Algebras: Towards an Axiomatization of Interval-Valued Residuated Lattices

In this paper, we present triangle algebras: residuated lattices equipped with two modal, or approximation, operators and with a third angular point u, different from 0 (false) and 1 (true), intuitively denoting ignorance about a formula’s truth value. We prove that these constructs, which bear a close relationship to several other algebraic structures including rough approximation spaces, prov...

متن کامل

A Mathematical Setting for Fuzzy Logics

The setup of a mathematical propositional logic is given in algebraic terms, describing exactly when two choices of truth value algebras give the same logic. The propositional logic obtained when the algebra of truth values is the real numbers in the unit interval equipped with minimum, maximum and :x = 1 x for conjunction, disjunction and negation, respectively, is the standard propositional f...

متن کامل

Title Fuzzy Topology and Łukasiewicz Logics from the

This paper explores relationships between many-valued logic and fuzzy topology from the viewpoint of duality theory. We first show a fuzzy topological duality for the algebras of Lukasiewicz n-valued logic with truth constants, which generalizes Stone duality for Boolean algebras to the n-valued case via fuzzy topology. Then, based on this duality, we show a fuzzy topological duality for the al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011