The Brain Network Underpinning Novel Melody Creation
نویسندگان
چکیده
Musical improvisation offers an excellent experimental paradigm for the study of real-time human creativity. It involves moment-to-moment decision-making, monitoring of one's performance, and utilizing external feedback to spontaneously create new melodies or variations on a melody. Recent neuroimaging studies have begun to study the brain activity during musical improvisation, aiming to unlock the mystery of human creativity. What brain resources come together and how these are utilized during musical improvisation are not well understood. To help answer these questions, we recorded electroencephalography (EEG) signals from 19 experienced musicians while they played or imagined short isochronous learned melodies and improvised on those learned melodies. These four conditions (Play-Prelearned, Play-Improvised, Imagine-Prelearned, Imagine-Improvised) were randomly interspersed in a total of 300 trials per participant. From the sensor-level EEG, we found that there were power differences in the alpha (8-12 Hz) and beta (13-30 Hz) bands in separate clusters of frontal, parietal, temporal, and occipital electrodes. Using EEG source localization and dipole modeling methods for task-related signals, we identified the locations and network activities of five sources: the left superior frontal gyrus (L SFG), supplementary motor area (SMA), left inferior parietal lobule (L IPL), right dorsolateral prefrontal cortex, and right superior temporal gyrus. During improvisation, the network activity between L SFG, SMA, and L IPL was significantly less than during the prelearned conditions. Our results support the general idea that attenuated cognitive control facilitates the production of creative output.
منابع مشابه
A Robust Music Retrieval Method for Query- by-Humming
In this paper, we present a novel melody representation and matching method, which is both robust against pitch errors and invariant to liner or non-linear tempo variation. The melody of a music item or a query is represented by a point sequence, which is derived from the pitch contour of the melody. This point sequence is invariant to the time or speed in the original melody contour. Important...
متن کاملA Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis
Background: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and classification processes of MS clinical datasets.Objective: We classified patients with relapsing-r...
متن کاملMidiNet: A Convolutional Generative Adversarial Network for Symbolic-Domain Music Generation
Most existing neural network models for music generation use recurrent neural networks. However, the recent WaveNet model proposed by DeepMind shows that convolutional neural networks (CNNs) can also generate realistic musical waveforms in the audio domain. Following this light, we investigate using CNNs for generating melody (a series of MIDI notes) one bar after another in the symbolic domain...
متن کاملImaging melody and rhythm processing in young children.
In the adult brain, melody and rhythm processing have been found to show different hemispheric dominance, with the right hemisphere apparently more sensitive to melody and the left hemisphere to rhythm. We used a novel, child-friendly scanning protocol to examine the neural basis of melody and rhythm processing in young children (mean age 6 years 4 months, n=33). FMRI data were acquired using a...
متن کاملAN IMPROVED CONTROLLED CHAOTIC NEURAL NETWORK FOR PATTERN RECOGNITION
A sigmoid function is necessary for creation a chaotic neural network (CNN). In this paper, a new function for CNN is proposed that it can increase the speed of convergence. In the proposed method, we use a novel signal for controlling chaos. Both the theory analysis and computer simulation results show that the performance of CNN can be improved remarkably by using our method. By means of this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain connectivity
دوره 6 10 شماره
صفحات -
تاریخ انتشار 2016