The synthetic killer peptide KP impairs Candida albicans biofilm in vitro

نویسندگان

  • Simona Paulone
  • Andrea Ardizzoni
  • Arianna Tavanti
  • Serena Piccinelli
  • Cosmeri Rizzato
  • Antonella Lupetti
  • Bruna Colombari
  • Eva Pericolini
  • Luciano Polonelli
  • Walter Magliani
  • Stefania Conti
  • Brunella Posteraro
  • Claudio Cermelli
  • Elisabetta Blasi
  • Samuele Peppoloni
چکیده

Candida albicans is a commensal organism, commonly inhabiting mucosal surfaces of healthy individuals, as a part of the resident microbiota. However, in susceptible hosts, especially hospitalized and/or immunocompromised patients, it may cause a wide range of infections. The presence of abiotic substrates, such as central venous or urinary catheters, provides an additional niche for Candida attachment and persistence, particularly via biofilm development. Furthermore, Candida biofilm is poorly susceptible to most antifungals, including azoles. Here we investigated the effects of a synthetic killer peptide (KP), known to be active in vitro, ex vivo and/or in vivo against different pathogens, on C. albicans biofilm. Together with a scrambled peptide used as a negative control, KP was tested against Candida biofilm at different stages of development. A reference strain, two fluconazole-resistant and two fluconazole-susceptible C. albicans clinical isolates were used. KP-induced C. albicans oxidative stress response and membrane permeability were also analysed. Moreover, the effect of KP on transcriptional profiles of C. albicans genes involved in different stages of biofilm development, such as cell adhesion, hyphal development and extracellular matrix production, was evaluated. Our results clearly show that the treatment with KP strongly affected the capacity of C. albicans to form biofilm and significantly impairs preformed mature biofilm. KP treatment resulted in an increase in C. albicans oxidative stress response and membrane permeability; also, biofilm-related genes expression was significantly reduced. Comparable inhibitory effects were observed in all the strains employed, irrespective of their resistance or susceptibility to fluconazole. Finally, KP-mediated inhibitory effects were observed also against a catheter-associated C. albicans biofilm. This study provides the first evidence on the KP effectiveness against C. albicans biofilm, suggesting that KP may be considered as a potential novel tool for treatment and prevention of biofilm-related C. albicans infections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Therapeutic activity of an engineered synthetic killer antiidiotypic antibody fragment against experimental mucosal and systemic candidiasis.

Peptides derived from the sequence of a single-chain, recombinant, antiidiotypic antibody (IdAb; KT-scFv) acting as a functional internal image of a microbicidal, wide-spectrum yeast killer toxin (KT) were synthesized and studied for their antimicrobial activity by using the KT-susceptible Candida albicans as model organism. A decapeptide containing the first three amino acids (SAS) of the ligh...

متن کامل

Inhibition of Candida albicans Biofilm Formation by the Synthetic Lactoferricin Derived Peptide hLF1-11

The aim of this study was to evaluate the in vitro activity of the synthetic peptide hLF1-11 against biofilm produced by clinical isolates of Candida albicans with different fluconazole susceptibility. The antibiofilm activity of the peptide hLF1-11 was assessed in terms of reduction of biofilm cellular density, metabolic activity and sessile cell viability. The extent of morphogenesis in hLF1-...

متن کامل

Production of an engineered killer peptide in Nicotiana benthamiana by using a potato virus X expression system.

The decapeptide killer peptide (KP) derived from the sequence of a single-chain, anti-idiotypic antibody acting as a functional internal image of a microbicidal, broad-spectrum yeast killer toxin (KT) was shown to exert a strong microbicidal activity against human pathogens. With the aim to exploit this peptide to confer resistance to plant pathogens, we assayed its antimicrobial activity again...

متن کامل

Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans.

Enterococcus faecalis, a Gram-positive bacterium, and Candida albicans, a fungus, occupy overlapping niches as ubiquitous constituents of the gastrointestinal and oral microbiome. Both species also are among the most important and problematic, opportunistic nosocomial pathogens. Surprisingly, these two species antagonize each other's virulence in both nematode infection and in vitro biofilm mod...

متن کامل

A Linear 19-Mer Plant Defensin-Derived Peptide Acts Synergistically with Caspofungin against Candida albicans Biofilms

Public health problems are associated with device-associated biofilm infections, with Candida albicans being the major fungal pathogen. We previously identified potent antibiofilm combination treatment in which the antifungal plant defensin HsAFP1 is co-administered with caspofungin, the preferred antimycotic to treat such infections. In this study, we identified the smallest linear HsAFP1-deri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017