Phase and intensity characterization of femtosecond pulses from a chirped-pulse amplifier by frequency-resolved optical gating.

نویسندگان

  • B Kohler
  • V V Yakovlev
  • K R Wilson
  • J Squier
  • K W Delong
  • R Trebino
چکیده

Frequency-resolved optical gating (FROG) measurements were made to characterize pulses from a Ti:sapphire chirped-pulse amplified laser system. By characterizing both the pulse intensity and the phase, the FROG data provided the first direct observation to our knowledge of residual phase distortion in a chirped-pulse amplifier. The FROG technique was also used to measure the regenerative amplifier dispersion and to characterize an amplitude-shaped pulse. The data provide an experimental demonstration of the value of FROG for characterizing complex pulses, including tailored femtosecond pulses for quantum control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurement of the intensity and phase of attojoule femtosecond light pulses using Optical-Parametric-Amplification Cross-Correlation Frequency-Resolved Optical Gating.

We use the combination of ultrafast gating and high parametric gain available with Difference-Frequency Generation (DFG) and Optical Parametric Amplification (OPA) to achieve the complete measurement of ultraweak ultrashort light pulses. Specifically, spectrally resolving such an amplified gated pulse vs. relative delay yields the complete pulse intensity and phase vs. time. This technique is a...

متن کامل

Comparison of ultrashort-pulse frequency-resolved-optical-gating traces for three common beam geometries

We recently introduced frequency-resolved optical gating (FROG), a technique for measuring the intensity and phase of an individual, arbitrary, ultrashort laser pulse. FROG can use almost any instantaneous optical nonlinearity, with the most common geometries being polarization gate, self-diffraction, and secondharmonic generation. The experimentally generated FROG trace is intuitive, visually ...

متن کامل

Ultrasensitive second-harmonic generation frequency-resolved optical gating by aperiodically poled LiNbO3 waveguides at 1.5 microm.

We retrieve intensity and phase profiles of 280 fs, 50 MHz optical pulses with 124 aJ coupled pulse energy (960 photons) by second-harmonic generation (SHG) frequency-resolved optical gating, using aperiodically poled LiNbO3 waveguides. The strong nonlinear interaction that is due to confinement within the micrometer-sized waveguide structure and the linearly chirped poling period contribute, r...

متن کامل

Cross-Correlation Frequency-Resolved Optical Gating for Test-Pulse Characterization Using a Self-Diffraction Signal of a Reference Pulse

A diagnostic system using three frequency-resolved optical gating (FROG) techniques—crosscorrelation, second harmonic generation, and self-diffraction—is reported for the reliable characterization of femtosecond laser pulses. The latter two FROG techniques are employed to evaluate suitability in measurements of the reference pulse. A train of optical pulses generated by the superposition of two...

متن کامل

Ultrasensitive nonlinear measurements of femtosecond pulses in the telecommunications band by aperiodically poled LiNbO3 waveguides.

We have used aperiodically poled lithium niobate waveguides to perform intensity autocorrelation and frequency-resolved optical gating (FROG) measurements for ultraweak femtosecond pulses at 1.5 microm wavelength. The required pulse energies for intensity autocorrelation and FROG are as low as 52 aJ and 124 aJ, respectively. The corresponding sensitivities are 3.2 x 10(-7) mW(2) and 2.7 x 10(-6...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics letters

دوره 20 5  شماره 

صفحات  -

تاریخ انتشار 1995