Gene Expression Data Clustering and Visualization Based on a Binary Heirarchical Clustering Framework
نویسندگان
چکیده
We describe the use of a binary hierarchical clustering (BHC) framework for clustering of gene expression data. The BHC algorithm involves two major steps. Firstly, the K-means algorithm is used to split the data into two classes. Secondly, the Fisher criterion is applied to the classes to assess whether the splitting is acceptable. The algorithm is applied to the sub-classes recursively and ends when all clusters cannot be split any further. BHC does not require the number of clusters to be known. It does not place any assumption about the number of samples in each cluster or the class distribution. The hierarchical framework naturally leads to a tree structure representation. We show that by arranging the BHC clustered gene expression data in a tree structure, we can easily visualize the cluster results. In addition, the tree structure display allows user judgement in finalizing the clustering result using prior biological knowledge.
منابع مشابه
Gene Expression Data Clustering and Visualization Based on a Binary Hierarchical Clustering Framework
We describe the use of a binary hierarchical clustering (BHC) framework for clustering of gene expression data. The BHC algorithm involves two major steps. Firstly, the K-means algorithm is used to split the data into two classes. Secondly, the Fisher criterion is applied to the classes to assess whether the splitting is acceptable. The algorithm is applied to the sub-classes recursively and en...
متن کاملخوشهبندی دادههای بیانژنی توسط عدم تشابه جنگل تصادفی
Background: The clustering of gene expression data plays an important role in the diagnosis and treatment of cancer. These kinds of data are typically involve in a large number of variables (genes), in comparison with number of samples (patients). Many clustering methods have been built based on the dissimilarity among observations that are calculated by a distance function. As increa...
متن کاملModification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملAssessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملApplication of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Vis. Lang. Comput.
دوره 14 شماره
صفحات -
تاریخ انتشار 2003