Automated Road Network Extraction from High Resolution Multi-spectral Imagery
نویسندگان
چکیده
In this paper, a new approach to road network extraction from multi-spectral (MS) imagery is presented. The proposed approach begins with an image segmentation using a spectral clustering algorithm. This step focuses on the exploitation of the spectral information for feature extraction. The road cluster(s) is automatically identified using a fuzzy classifier based on a set of predefined membership functions for road surfaces and the corresponding normalized digital numbers in each multi-spectral band. A number of shape descriptors from the refined Angular Texture Signature are defined and used to reduce the misclassifications between roads and other spectrally similar objects such as parking lots, buildings or crop fields. An iterative and localized Radon transform is then performed on the classified and refined road pixels to extract road centerline segments. The detected road segments are further grouped to form the final road network, which is evaluated against a reference dataset. Our experiments on Ikonos MS, Quickbird MS, and color aerial imagery show that the proposed approach is effective in automating road network extraction from high resolution multi-spectral imagery. Results from two different evaluation schemes also indicated that the proposed approach has achieves a performance comparable to other methods.
منابع مشابه
Automated Road Network Extraction from High Spatial Resolution Multi-Spectral Imagery
........................................................................................................................ iii Acknowledgements.........................................................................................................v Table of
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملAn Integrated Approach to Extracting Urban Road Networks from High Resolution Multi-spectral Imagery
Automated road network extraction from remotely sensed imagery can be a promising approach to efficient road databases creation, refinement and updating. However, due to the extreme complexity of an urban scene, road extraction in urban areas is challenging. This paper presents a new integrated approach to extract urban road networks from high spatial-resolution multi-spectral imagery. The prop...
متن کاملRoad Network Extraction from High Resolution Multispectral Satellite Imagery Based on Object Oriented Techniques
High Resolution satellite Imagery is an important source for road network extraction for urban road database creation, refinement and updating. However due to complexity of the scene in an urban environment, automated extraction of such features using various line and edge detection algorithms is limited. In this paper we present an integrated approach to extract road network from high resoluti...
متن کاملUsing Self-organizing Map for Road Network Extraction from Ikonos Imagery
Automated road information extraction enables the ready creation, maintenance, and update of the transportation network databases used for traffic management and automated vehicle navigation. This paper presents a semi-automatic method for road network extraction from high-resolution satellite images. First, we focus on detecting the seed points in candidate road regions using a Kohonen-type se...
متن کامل