Quantum mechanical calculation of nanomaterial-ligand interaction energies by molecular fractionation with conjugated caps method
نویسنده
چکیده
Molecular fractionation with conjugate caps (MFCC) method is introduced for the efficient estimation of quantum mechanical (QM) interaction energies between nanomaterial (carbon nanotube, fullerene, and graphene surface) and ligand (charged and neutral). In the calculations, nanomaterials are partitioned into small fragments and conjugated caps that are properly capped, and the interaction energies can be obtained through the summation of QM calculations of the fragments from which the contribution of the conjugated caps is removed. All the calculations were performed by density functional theory (DFT) and dispersion contributions for the attractive interactions were investigated by dispersion corrected DFT method. The predicted interaction energies by MFCC at each computational level are found to give excellent agreement with full system (FS) calculations with the mean energy deviation just a fractional kcal/mol. The accurate determination of nanomaterial-ligand interaction energies by MFCC suggests that it is an effective method for performing QM calculations on nanomaterial-ligand systems.
منابع مشابه
Fractionation of peptide with disulfide bond for quantum mechanical calculation of interaction energy with molecules.
We present a computational study of a recently developed molecular fractionation with conjugated caps (MFCC) method for application to peptide/protein that has disulfide bonds. Specifically, we employ the MFCC approach to generate peptide fragments in which a disulfide bond is cut and a pair of conjugated caps are inserted. The method is tested on two peptides interacting with a water molecule....
متن کاملQuantum mechanical map for protein-ligand binding with application to beta-trypsin/benzamidine complex.
We report full ab initio Hartree-Fock calculation to compute quantum mechanical interaction energies for beta-trypsin/benzamidine binding complex. In this study, the full quantum mechanical ab initio energy calculation for the entire protein complex with 3238 atoms is made possible by using a recently developed MFCC (molecular fractionation with conjugate caps) approach in which the protein mol...
متن کاملMolecular caps for full quantum mechanical computation of peptide-water interaction energy
We present a systematic study of numerical accuracy of various forms of molecular caps that are employed in a recently developed molecular fractionation scheme for full quantum mechanical computation of protein-molecule interaction energy. A previously studied pentapeptide (Gly-Ser-Ala-Asp-Val) or P5 interacting with a water molecule is used as a benchmark system for numerical testing. One-dime...
متن کاملFully quantum mechanical energy optimization for protein-ligand structure
We present a quantum mechanical approach to study protein-ligand binding structure with application to a Adipocyte lipid-binding protein complexed with Propanoic Acid. The present approach employs a recently develop molecular fractionation with a conjugate caps (MFCC) method to compute protein-ligand interaction energy and performs energy optimization using the quasi-Newton method. The MFCC met...
متن کاملElectrostatically embedded generalized molecular fractionation with conjugate caps method for full quantum mechanical calculation of protein energy.
An electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method is developed for efficient linear-scaling quantum mechanical (QM) calculation of protein energy. This approach is based on our previously proposed GMFCC/MM method (He; et al. J. Chem. Phys. 2006, 124, 184703), In this EE-GMFCC scheme, the total energy of protein is calculated by taking a line...
متن کامل