Numerical solution of nonlinear wave equations in stratified dispersive media

نویسندگان

  • Christoph Karle
  • Julia Schweitzer
  • Marlis Hochbruck
  • Ernst-Wolfgang Laedke
  • Karl-Heinz Spatschek
چکیده

Nonlinear wave motion in dispersive media is solved numerically. The model applies to laser propagation in a relativistic plasma. The latter causes, besides dispersion, nonlinear effects due to relativistic mass variation in the presence of strong laser pulses. A new variant of the Gautschi–type integrator for reducing the number of time steps is proposed as a fast solver for such nonlinear wave–equations. In order to reduce the number of spatial grid points, a physically motivated quasi–envelope approach (QEA) is introduced. The new method turns out to reduce the computational time significantly compared to the standard leap–frog scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Volume Methods for Nonlinear Elasticity in Heterogeneous Media

An approximate Riemann solver is developed for the equations of nonlinear elasticity in a heterogeneous medium, where each grid cell has an associated density and stress-strain relation. The nonlinear flux function is spatially varying and a wave decomposition of the flux difference across a cell interface is used to approximate the wave structure of the Riemann solution. This solver is used in...

متن کامل

Numerical Solution of Some Nonlocal, Nonlinear Dispersive Wave Equations

We use a spectral method to solve numerically two nonlocal, nonlinear, dispersive, integrable wave equations, the Benjamin-Ono and the Intermediate Long Wave equations. The proposed numerical method is able to capture well the dynamics of the solutions; we use it to investigate the behaviour of solitary wave solutions of the equations with special attention to those, among the properties usuall...

متن کامل

Error Estimates for a Fully Discrete Spectral Scheme for a Class of Nonlinear, Nonlocal Dispersive Wave Equations

We analyze a fully discrete spectral method for the numerical solution of the initial-and periodic boundary-value problem for two nonlinear, non-local, dispersive wave equations, the Benjamin-Ono and the Intermediate Long Wave equations. The equations are discretized in space by the standard Fourier-Galerkin spectral method and in time by the explicit leapfrog scheme. For the resulting fully di...

متن کامل

A numerical solution of variable order diusion and wave equations

In this work, we consider variable order difusion and wave equations. The derivative is describedin the Caputo sence of variable order. We use the Genocchi polynomials as basic functions andobtain operational matrices via these polynomials. These matrices and collocation method help usto convert variable order diusion and wave equations to an algebraic system. Some examples aregiven to show the...

متن کامل

Stability and Symmetry of Solitary-wave Solutions to Systems Modeling Interactions of Long Waves

We consider systems of equations which arise in modelling strong interactions of weakly nonlinear long waves in dispersive media. For a certain class of such systems, we prove the existence and stability of localized solutions representing coupled solitary waves travelling at a common speed. Our results apply in particular to the systems derived by Gear and Grimshaw and by Liu, Kubota, and Ko a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 216  شماره 

صفحات  -

تاریخ انتشار 2006