A regeneration proof of the central limit theorem for uniformly ergodic Markov chains

نویسندگان

  • AJAY JASRA
  • CHAO YANG
چکیده

E h(x)π(dx). Ibragimov and Linnik (1971) proved that if (Xn) is geometrically ergodic, then a central limit theorem (CLT) holds for h whenever π(|h|) < ∞, δ > 0. Cogburn (1972) proved that if a Markov chain is uniformly ergodic, with π(h) < ∞ then a CLT holds for h. The first result was re-proved in Roberts and Rosenthal (2004) using a regeneration approach; thus removing many of the technicalities of the original proof. This raised an open problem: to provide a proof of the second result using a regeneration approach. In this paper we provide a solution to this problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Regeneration Proof of the Central Limit Theorem for Uniformly Ergodic Markov Chains

Abstract Central limit theorems for functionals of general state space Markov chains are of crucial importance in sensible implementation of Markov chain Monte Carlo algorithms as well as of vital theoretical interest. Different approaches to proving this type of results under diverse assumptions led to a large variety of CTL versions. However due to the recent development of the regeneration t...

متن کامل

Limit Theorems for subgeometric Markov chains

This paper studies limit theorems for Markov Chains with general state space under conditions which imply subgeometric ergodicity. We obtain a central limit theorem and moderate deviation principles for additive not necessarily bounded functional of the Markov chains under drift and minorization conditions which are weaker than the Foster-Lyapunov conditions. The regeneration-split chain method...

متن کامل

Bounds on Regeneration times and Limit Theorems for Subgeometric Markov Chains Bornes Des Temps De Régénération Et Théorèmes Limites Pour Des Chaînes De Markov Sous-géométriques

Abstract. This paper studies limit theorems for Markov Chains with general state space under conditions which imply subgeometric ergodicity. We obtain a central limit theorem and moderate deviation principles for additive not necessarily bounded functional of the Markov chains under drift and minorization conditions which are weaker than the Foster-Lyapunov conditions. The regeneration-split ch...

متن کامل

Individual ergodic theorem for intuitionistic fuzzy observables using intuitionistic fuzzy state

The classical ergodic theory hasbeen built on σ-algebras. Later the Individual ergodictheorem was studied on more general structures like MV-algebrasand quantum structures. The aim of this paper is to formulate theIndividual ergodic theorem for intuitionistic fuzzy observablesusing  m-almost everywhere convergence, where  m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006