Alternate Glucometer Bio-sensor Model Based on Ultrasonic MEMS Transceivers

نویسندگان

  • P. Pattnaik
  • S. K. Kamilla
  • Debi Prasad Das
چکیده

To prevent further complications in diabetes, proper management of blood glucose levels is essential. By using ultrasonic transceivers (both transmit and receive) the glucose level of human blood can be determined. Ultrasonic sensors works on the principle of generating high frequency sound waves by evaluating the echo which is received back by the sensor. By using this ultrasonic technique miniaturized sensors for non-invasive monitoring blood glucose levels. In this paper Barium Titanate (BaTiO3) (BT) thin film was used as a transmitter and receiver. The simulation work using COMSOL Multiphysics software was carried out with this piezoelectric material with a model of blood with controlled density level. The size of BT thinfilm was optimized with respect to its width and thickness to produce maximum transmitting pressure at the transmitting end and maximum voltage at the receiving end. The transmitted was excited by 2 MHz oscillation at 1.6 V. The received potential was found to be varying with the density change of the blood medium. Hence BT can be used as a suitable biosensor for glucometer application.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Simulation of a Fluidic Micro-Bio-Sensor Based on Resonator Array

In this paper, a fluidic biosensor with possibility to fabricate by Micro-Electro-Mechanical Systems (MEMS) technology is proposed for biomedical mass detection and lab-on-chip applications. This is designed by electromechanical coupling of harmonic micromechanical resonators with harmonic springers as a mechanical resonator array. It can disperse mechanical wave along the array by electrostati...

متن کامل

Accurate Model of Capacitance for MEMS Sensors using Corrugated Diaphragm with Residual Stress

In this paper we present a new model for calculating the capacitance of MEMS sensor with corrugated diaphragm. In this work the effect of residual stress is considered on deflection of diaphragm and capacitance of sensor. First, a new analytical analyzes have been carried out to derive mathematic expressions for central deflection of corrugated diaphragm and its relationship with residual stres...

متن کامل

New Design of Mems piezoresistive pressure sensor

The electromechanical analysis of a piezoresistive pressure microsensor with a square-shaped diaphragm for low-pressure biomedical applications is presented. This analysis is developed through a novel model and a finite element method (FEM) model. A microsensor with a diaphragm 1000 „m length and with thickness=400 µm is studied. The electric response of this microsensor is obtained with applyi...

متن کامل

Simulation of RF-MEMS Bio Implantable Sensor for Orthopedic Application

The ability to telemetrically measure strain is important in many aspects of daily life which brings important scientific and technological challenges in many sectors such as civil engineering, aircraft modeling, etc..,. Another unrealized, application area is human medicine and healthcare. MEMS (Micro ElectroMechanical System) technology for Radio Frequency applications has emerged in recent y...

متن کامل

Uncertainty Measurement for Ultrasonic Sensor Fusion Using Generalized Aggregated Uncertainty Measure 1

In this paper, target differentiation based on pattern of data which are obtained by a set of two ultrasonic sensors is considered. A neural network based target classifier is applied to these data to categorize the data of each sensor. Then the results are fused together by Dempster–Shafer theory (DST) and Dezert–Smarandache theory (DSmT) to make final decision. The Generalized Aggregated Unce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013