Face Recognition Based Principal Component Analysis And Wavelet Sub bands
نویسنده
چکیده
Face recognition is important in human identification. The biological recognition technique acts as a good method and broad applications in security areas. This work presents a method to improve the face recognition accuracy using a combination of Principal Component Analysis (PCA), and Wavelet Transform. Wavelet Transform is used to decompose the input image with different levels and rearrangement of subband of wavelet in a way that extract a good information from the image; PCA is used as data redundancy and take the better representation of input data. We apply the proposed method on standard face recognition dataset, the ORL data and dataset from our environment to make the proposed method be practical. The comparison for different levels of wavelet show that the third level has better recognition accuracy with respect to other levels .Finally the performance of the proposed method is compared with other methods and gives better recognition accuracy. Keywords— Face recognition, wavelet transform, PCA تابكرملا لیلحت لامعتساب ھجولا زییمت ةیلصلأا ةجیوملا لیوحت عم ةروصلل م . د . يرم نیسح سابع ةیرصنتسملا ةعماجلا/ ةسدنھلا ةیلك / ءابرھكلا مسق ةصلاخلا : ربتعی ھجولا ىلع فرعتلا ةمھملا روملأا نم ةیرشبلا ةیوھلا دیدحت يف و دعت باثمب يجولویبلا فرعتلا ةینقت ةقیرط ة و ةدیج تاذ ةینملأا تلااجملا يف ةعساو تاقیبطت . مادختساب هوجولا ىلع فرعتلا ةقد نیسحتل ةقیرط لمعلا اذھ مدقی تابكرملا نم جیزم ةیلصلأا تاجیوملا لیوحتو ، . وملا لیوحت مدختسی ی تل تاج لیلح ،ةفلتخم تایوتسم عم ةلخدملا ةروصلا یرطب تاجیوملا نم ھتابكرم بیترت ةداعإو مادختسا متی امك ،ةروصلا نم ةدیج تامولعم عازتنا ةق تابكرملا لیلحت ةیلصلاا تانایبلا لاخدإ نم لیثمت لضفأ ذاختاو لیلقتل . ةحرتقملا ةقیرطلا انقبط ل تانایب ةیسایق تانایبلا ةعومجم ، ORL و ةحرتقملا ةقیرطلا لعجل انتئیب نم رثكأ یلمع ة . نم ةفلتخم تایوتسمل ةنراقمو لیوحت لا تاجیوم . ناك ثلاثلا ىوتسملا قلعتی امیف فرعتلا ةقد لضفأ ھیدل ب ىرخأ تایوتسم . ىرخأ بیلاسأ عم ةحرتقملا ةقیرطلا ءادأ ةنراقم متت اریخأو تطعأو قدأ جئاتن . Journal of Engineering and Development, Vol. 17, No.5, November 2013 , ISSN 18137822 239
منابع مشابه
A Wavelet-domain Local Dominant Feature Selection Scheme for Face Recognition
In this paper, a multi-resolution feature extraction algorithm for face recognition is proposed based on two-dimensional discrete wavelet transform (2DDWT), which efficiently exploits the local spatial variations in a face image. For the purpose of feature extraction, instead of considering the entire face image, an entropybased local band selection criterion is developed, which selects high-in...
متن کاملStatistical Wavelet Features, PCA, and SVM Based Approach for EEG Signals Classification
The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet...
متن کاملA Face Recognition Scheme using Wavelet Based Dominant Features
In this paper, a multi-resolution feature extraction algorithm for face recognition is proposed based on two-dimensional discrete wavelet transform (2D-DWT), which efficiently exploits the local spatial variations in a face image. For the purpose of feature extraction, instead of considering the entire face image, an entropy-based local band selection criterion is developed, which selects high-...
متن کامل3D Face Compression and Recognition using Spherical Wavelet Parametrization
In this research an innovative fully automated 3D face compression and recognition system is presented. Several novelties are introduced to make the system performance robust and efficient. These novelties include: First, an automatic pose correction and normalization process by using curvature analysis for nose tip detection and iterative closest point (ICP) image registration. Second, the use...
متن کاملDual Tree Complex Wavelet Transform based Face Recognition with Single View
In this paper, we propose a novel local appearance feature extraction method based on multi-resolution Dual Tree Complex Wavelet Transform (DT-CWT). Each face is described by a subset of band filtered images containing block-based DT-CWT coefficients. These coefficients characterize the face texture. The block based mean and variance of complex wavelet coefficients are used to describe the face...
متن کامل