High-resolution mobility analysis of charge-reduced electrosprayed protein ions.
نویسنده
چکیده
Many mobility studies (IMS) of electrospray ions with charge states z reduced to unity have shown a singular ability to analyze large protein complexes and viruses, though with wide mobility peaks (fwhm ∼ 20%). Here we confirm that this limitation arises primarily when early charge reduction precedes drop evaporation (suppressing secondary atomization by the usual sequence of many Coulomb explosions). By drying before neutralizing, we achieve a protein fwhm of ∼3.7%. A positively biased electrospraying capillary is coaxial with a cylindrical charge-reduction (CR) chamber coated with radioactive Ni-63 (10 mCi) that fills the CR chamber with a bipolar ionic atmosphere. A screen interposed between the spraying capillary and the CR chamber limits penetration of the neutralizing anions into the electrospray (ES) chamber, precluding destabilization of the ES tip, even when brought very close to the grid to enhance ion transmission. As ES cations cross the grid, driven by their own space charge, they recombine with CR ions reducing their charge state as well as space charge dispersion. The setup is tested with the protein ovalbumin (MW ∼ 44.3 kDa) and its clusters up to the tetramer, by analyzing the charge-reduced ions with a differential mobility analyzer (DMA). At gas sample flow rates of ∼1 L/min, the dominant peaks are singly charged (z = 1). They are widened by clustering of involatile solution impurities, depending on spray quality and solution cleanness, with fwhm as small as 3.7% achieved in desalted and acidified solutions. When using sharp nanospray capillaries, the grid may be removed, resulting in ∼2-fold increased ion transmission. In the absence of the grid, however, spray stability and quality are often compromised, even with capillary tip diameters as small as 30 μm.
منابع مشابه
Mass analysis of water-soluble polymers by mobility measurement of charge-reduced ions generated by electrosprays.
Aqueous solutions of poly(ethylene glycol) (PEG) in a 10 mM ammonium acetate buffer are electrosprayed, and the maximum charge state on the resulting gas-phase ions is reduced to unity using a radioactive source. The mobility distribution of these charged particles is then measured in air in a differential mobility analyzer of unusually high resolution. The relation Z(m) between the mobility Z ...
متن کاملThree-dimensional ion mobility/TOFMS analysis of electrosprayed biomolecules.
An ion mobility/mass spectrometry technique has been developed to record mass-resolved ion mobility distributions for multiple ions simultaneously. The approach involves a new instrument that couples an electrospray ion source to an injected-ion drift tube/time-of-flight mass spectrometer. Individual components in a mixture of ions are separated by mobility differences in a drift tube and subse...
متن کاملGas-phase separations of electrosprayed peptide libraries.
High-resolution ion mobility spectrometry has been combined with time-of-flight mass spectrometry for analysis of a combinatorial peptide library that is expected to contain 676 components. In this approach, the components of a mixture of three residue peptides, having the general form (D)Phe-Xxx-Xxx-CONH2 (where Xxx is randomized over 26 residues including 10 naturally occurring amino acids an...
متن کاملSeparation of isomeric peptides using electrospray ionization/high-resolution ion mobility spectrometry.
In this paper, the first examples of baseline separation of isomeric macromolecules by electrospray ionization/ion mobility spectrometry (ESI/IMS) at atmospheric pressure are presented. The behavior of a number of different isomeric peptides in the IMS was investigated using nitrogen as a drift gas. The IMS was coupled to a quadrupole mass spectrometer, which was used for identification and sel...
متن کاملSHORT COMMUNICATION Gas-Phase Separations of Protease Digests
A mixture of peptides from a complete tryptic digest of ubiquitin has been analyzed by ion mobility/time-of-flight mass spectrometry techniques. All components of the mixture were electrosprayed and ions were separated in the gas phase based on differences in their mobilities through helium before being dispersed into a time-of-flight mass spectrometer for mass-to-charge analysis. The data show...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 87 7 شماره
صفحات -
تاریخ انتشار 2015