Design and Hydrologic Performance of a Tile Drainage Treatment Wetland in Minnesota, USA
نویسندگان
چکیده
Treatment wetlands are increasingly needed to remove nitrate from agricultural drainage water to protect downstream waters, such as the Gulf of Mexico. This project sought to develop a new edge-of-field treatment wetland, designed to remove nitrate-nitrogen and enhance phosphorus removal by plant harvest and to monitor its effectiveness. A 0.10 ha wetland was designed and installed to treat subsurface drainage flow from farmland in southwestern Minnesota, USA, in 2013, and monitored for three years by recording flow, nitrate-nitrogen, total phosphorus (TP) and soluble orthophosphorus (OP) input to and output from the wetland. Prior to construction, a level-pool routing, mass balance approach with DRAINMOD flow inputs was used to predict nitrate removal efficiency. Nitrate load removal averaged 68% over three years, nearly matching model predictions. However, most denitrification occurred in the sub-soil of the wetland rather than in surface flow as predicted. Phosphorus removal was approximately 76% over three years, and phosphorus removed by plant uptake exceeded inflow mass in the third year. The edge-of-field design has potential as a cost-effective method to treat field outflows because agricultural landowners can adopt this treatment system with minimal loss of productive farmland. The wet-prairie vegetation and shallow depth also provide the opportunity to remove additional phosphorus via vegetative harvest.
منابع مشابه
Challenges and developments of bioretention facilities in treating urban stormwater runoff; A review
Bioretention or rain garden is a preferable low impact development (LID) approach due to its characteristics which reflect natural water cycle processes. However, this system is still little understood and quite complicated in terms of design and implementation due to many technical considerations. Hence, this paper gives a review of the challenges and developments for the use of bioretention f...
متن کاملChallenges and developments of bioretention facilities in treating urban stormwater runoff; A review
Bioretention or rain garden is a preferable low impact development (LID) approach due to its characteristics which reflect natural water cycle processes. However, this system is still little understood and quite complicated in terms of design and implementation due to many technical considerations. Hence, this paper gives a review of the challenges and developments for the use of bioretention f...
متن کاملApplying a Model to Predict the Location of Land Drained by Subsurface Drainage Systems in Central Minnesota
Agricultural drain tile systems are a significant influence on the condition of wetlands and waterways. The influence of these systems is often difficult to determine since installation records are incomplete or were never kept. Using a modified decision class tree and raster analysis in ArcGIS, a model for predicting the location of land drained by subsurface systems was evaluated. The three-c...
متن کاملHydrologic impacts of tile drainage in Iowa
ii ACKNOWLEDGMENTS I would like to acknowledge the following for completion of this thesis: God for giving me the patience, guidance and strength to succeed in this research. I am so grateful for everything I have been given and everything I was able to do. Without God I can do nothing. Dr. Nandita Basu for challenging and guiding me throughout graduate school and this research. I have grown an...
متن کاملEvaluation of the hooghoudt and kirkham tile drain equations in the soil and water assessment tool to simulate tile flow and nitrate-nitrogen.
Subsurface tile drains in agricultural systems of the midwestern United States are a major contributor of nitrate-N (NO-N) loadings to hypoxic conditions in the Gulf of Mexico. Hydrologic and water quality models, such as the Soil and Water Assessment Tool, are widely used to simulate tile drainage systems. The Hooghoudt and Kirkham tile drain equations in the Soil and Water Assessment Tool hav...
متن کامل