On the blow up phenomenon for the L critical nonlinear Schrödinger Equation

نویسنده

  • Pierre Raphaël
چکیده

with u0 ∈ H1 = {u,∇u ∈ L2(RN )} in dimension N ≥ 1. This equation for N = 2 appears in physics as a universal model to describe self trapping of waves propagating in nonlinear media. The physical expectation for large smooth data is the concentration of part of the L2 mass in finite time corresponding to the focusing of the laser beam. If some explicit examples of this phenomenon are known, and despite a number of both numerical and mathematical works, a general description of blow up dynamics is mostly open.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mass Concentration Phenomenon for the Quintic Nonlinear Schrödinger Equation in 1d

We consider the L-critical quintic focusing nonlinear Schrödinger equation (NLS) on R. It is well known that H solutions of the aforementioned equation blow-up in finite time. In higher dimensions, for H spherically symmetric blow-up solutions of the L-critical focusing NLS, there is a minimal amount of concentration of the L-norm (the mass of the ground state) at the origin. In this paper we p...

متن کامل

Blow-up for the Stochastic Nonlinear Schrödinger Equation with Multiplicative Noise

We study the influence of a multiplicative Gaussian noise, white in time and correlated in space, on the blow-up phenomenon in the supercritical nonlinear Schrödinger equation. We prove that any sufficiently regular and localized deterministic initial data gives rise to a solution which blows up in arbitrarily small time with a positive probability.

متن کامل

Blow up of the critical norm for some radial L super critical non linear Schrödinger equations

We consider the nonlinear Schrödinger equation iut = −∆u−|u|p−1u in dimension N ≥ 3 in the L super critical range N+3 N−1 ≤ p < N+2 N−2 . The corresponding scaling invariant space is Ḣc with 1 2 ≤ sc < 1 and this covers the physically relevant case N = 3, p = 3. The existence of finite time blow up solutions is known. Let u(t) ∈ Ḣc ∩ Ḣ be a radially symmetric blow up solution which blows up at ...

متن کامل

Changing blow-up time in nonlinear Schrödinger equations

Abstract Solutions to nonlinear Schrödinger equations may blow up in finite time. We study the influence of the introduction of a potential on this phenomenon. For a linear potential (Stark effect), the blow-up time remains unchanged, but the location of the collapse is altered. The main part of our study concerns isotropic quadratic potentials. We show that the usual (confining) harmonic poten...

متن کامل

On Blow-up Solutions to the 3d Cubic Nonlinear Schrödinger Equation

For the 3d cubic nonlinear Schrödinger (NLS) equation, which has critical (scaling) norms L and Ḣ, we first prove a result establishing sufficient conditions for global existence and sufficient conditions for finite-time blow-up. For the rest of the paper, we focus on the study of finite-time radial blow-up solutions, and prove a result on the concentration of the L norm at the origin. Two disp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004