Hierarchical Nominal Terms and Their Theory of Rewriting
نویسنده
چکیده
Nominal rewriting introduced a novel method of specifying rewriting on syntax-with-binding. We extend this treatment of rewriting with hierarchy of variables representing increasingly ‘meta-level’ variables, e.g. in hierarchical nominal term rewriting the meta-level unknowns (representing unknown terms) in a rewrite rule can be ‘folded into’ the syntax itself (and rewritten). To the extent that rewriting is a mathematical metaframework for logic and computation, and nominal rewriting is a framework with native support for binders, hierarchical nominal term rewriting is a meta-to-the-omega level framework for logic and computation with binders.
منابع مشابه
From nominal to higher-order rewriting and back again
We present a translation function from nominal rewriting systems (NRSs) to combinatory reduction systems (CRSs), transforming closed nominal rules and ground nominal terms to CRSs rules and terms, respectively, while preserving the rewriting relation. We also provide a reduction-preserving translation in the other direction, from CRSs to NRSs, improving over a previously defined translation. Th...
متن کاملTwo-level Lambda-calculus
Two-level lambda-calculus is designed to provide a mathematical model of capturing substitution, also called instantiation. Instantiation is a feature of the ‘informal meta-level’; it appears pervasively in specifications of the syntax and semantics of formal languages. The two-level lambda-calculus has two levels of variable. Lambda-abstraction and beta-reduction exist for both levels. A level...
متن کاملClosed nominal rewriting and efficiently computable nominal
We analyse the relationship between nominal algebra and nominal rewriting, giving a new and concise presentation of equational deduction in nominal theories. With some new results, we characterise a subclass of equational theories for which nominal rewriting provides a complete and efficient procedure to check nominal algebra equality. This subclass includes specifications of lambda-calculus an...
متن کاملRewriting in the partial algebra of typed terms modulo AC
We study the partial algebra of typed terms with an associative commutative and idempotent operator (typed AC-terms). The originality lies in the representation of the typing policy by a graph which has a decidable monadic theory. In this paper we show on two examples that some results on AC-terms can be raised to the level of typed AC-terms. The examples are the results on rational languages (...
متن کاملClosed nominal rewriting and efficiently computable nominal algebra equality
We analyse the relationship between nominal algebra and nominal rewriting, giving a new and concise presentation of equational deduction in nominal theories. With some new results, we characterise a subclass of equational theories for which nominal rewriting provides a complete procedure to check nominal algebra equality. This subclass includes specifications of lambda-calculus and first-order ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. Notes Theor. Comput. Sci.
دوره 174 شماره
صفحات -
تاریخ انتشار 2007