Numerical Integration of SDEs: A Short Tutorial

نویسنده

  • Thomas Schaffter
چکیده

dXt dt = f(Xt, t)dt+ g(Xt, t)dWt (1) where Xt = X(t) is the realization of a stochastic process or random variable. f(Xt, t) is called the drift coefficient, that is the deterministic part of the SDE characterizing the local trend. g(Xt, t) denotes the diffusion coefficient, that is the stochastic part which influences the average size of the fluctuations of X. The fluctuations themselves originate from the stochastic process Wt called Wiener process and introduced in Section 1.2. Interpreted as an integral, one gets

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Balanced Milstein Methods for Ordinary SDEs

Convergence, consistency, stability and pathwise positivity of balanced Milstein methods for numerical integration of ordinary stochastic differential equations (SDEs) are discussed. This family of numerical methods represents a class of highly efficient linear-implicit schemes which generate mean square converging numerical approximations with qualitative improvements and global rate 1.0 of me...

متن کامل

Stepsize Control for Mean-Square Numerical Methods for Stochastic Differential Equations with Small Noise

Abstract. A strategy for controlling the stepsize in the numerical integration of stochastic differential equations (SDEs) is presented. It is based on estimating the p-th mean of local errors. The strategy leads to stepsize sequences that are identical for all computed paths. For the family of Euler schemes for SDEs with small noise we derive computable estimates for the dominating term of the...

متن کامل

A practical guide to solving the stochastic Landau-Lifshitz-Gilbert-Slonczewski equation for macrospin dynamics

In this paper, we discuss the accuracy and complexity of various numerical techniques to solve the stochastic Landau-Lifshitz-Gilbert-Slonczewski (s-LLGS) equation. The s-LLGS equation is widely used by researchers to study the temporal evolution of the macrospin subject to spin torque and thermal noise. The numerical simulation of the s-LLGS equation requires an appropriate choice of stochasti...

متن کامل

Numerical Solution of Conservative Finite - Dimensional Stochastic Schrodinger Equations

The paper deals with the numerical solution of the nonlinear Itô stochastic differential equations (SDEs) appearing in the unravelling of quantum master equations. We first develop an exponential scheme of weak order 1 for general globally Lipschitz SDEs governed by Brownian motions. Then, we proceed to study the numerical integration of a class of locally Lipschitz SDEs. More precisely, we ada...

متن کامل

Efficient numerical integrators for stochastic models

The efficient simulation of models defined in terms of stochastic differential equations (SDEs) depends critically on an efficient integration scheme. In this article, we investigate under which conditions the integration schemes for general SDEs can be derived using the Trotter expansion. It follows that, in the stochastic case, some care is required in splitting the stochastic generator. We t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010