Improved Twitter Sentiment Prediction through Cluster-then-Predict Model
نویسندگان
چکیده
Over the past decade humans have experienced exponential growth in the use of online resources, in particular social media and microblogging websites such as Facebook, Twitter, YouTube and also mobile applications such as WhatsApp, Line, etc. Many companies have identified these resources as a rich mine of marketing knowledge. This knowledge provides valuable feedback which allows them to further develop the next generation of their product. In this paper, sentiment analysis of a product is performed by extracting tweets about that product and classifying the tweets showing it as positive and negative sentiment. The authors propose a hybrid approach which combines unsupervised learning in the form of K-means clustering to cluster the tweets and then performing supervised learning methods such as Decision Trees and Support Vector Machines for classification.
منابع مشابه
Sentiment Prediction Using Collaborative Filtering
Learning sentiment models from short texts such as tweets is a notoriously challenging problem due to very strong noise and data sparsity. This paper presents a novel, collaborative filtering-based approach for sentiment prediction in twitter conversation threads. Given a set of sentiment holders and sentiment targets, we assume we know the true sentiments for a small fraction of holder-target ...
متن کاملExchange Rate Prediction from Twitter's Trending Topics
This paper investigates whether incorporating sentiment extracted from Twitter’s trending topics would improve the intra-day exchange rate predictions. What makes this paper unique is that unlike previous similar studies which only consider tweets that contain the symbol or the name of the currency or stock, it looks at all trending topics irrespective of whether they contain the name or the sy...
متن کاملExploiting Topic based Twitter Sentiment for Stock Prediction
This paper proposes a technique to leverage topic based sentiments from Twitter to help predict the stock market. We first utilize a continuous Dirichlet Process Mixture model to learn the daily topic set. Then, for each topic we derive its sentiment according to its opinion words distribution to build a sentiment time series. We then regress the stock index and the Twitter sentiment time serie...
متن کاملA High-Performance Model based on Ensembles for Twitter Sentiment Classification
Background and Objectives: Twitter Sentiment Classification is one of the most popular fields in information retrieval and text mining. Millions of people of the world intensity use social networks like Twitter. It supports users to publish tweets to tell what they are thinking about topics. There are numerous web sites built on the Internet presenting Twitter. The user can enter a sentiment ta...
متن کاملIn Quest of Significance: Identifying Types of Twitter Sentiment Events that Predict Spikes in Sales
We study the power of Twitter events to predict consumer sales events by analysing sales for 75 companies from the retail sector and over 150 million tweets mentioning those companies along with their sentiment. We suggest an approach for events identification on Twitter extending existing methodologies of event study. We also propose a robust method for clustering Twitter events into different...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1509.02437 شماره
صفحات -
تاریخ انتشار 2015