Wide-Angle Polarization Independent Triple Band Absorber Based on Metamaterial Structure for Microwave Frequency Applications

نویسندگان

  • Khusboo Kumari
  • Naveen Mishra
  • Raghvendra Kumar Chaudhary
چکیده

This paper presents a wide-angle polarization independent triple-band absorber based on a metamaterial structure for microwave frequency applications. The designed absorber structure is the combination of two resonators (resonator-I and resonator-II). The proposed absorber is ultrathin in thickness (0.012λo at lowest resonance frequency and 0.027λo at highest resonance frequency). The proposed absorber structure offers three absorption bands with peak absorptivities of 99.95%, 95.32% and 99.47% at 4.48, 5.34 and 10.43GHz, respectively. Additionally, it also offers the full width at half maximum (FWHM) bandwidth of 167.2MHz (4.40–4.56 GHz), 178.1MHz (5.25–5.43 GHz) and 393.8MHz (10.24–10.63 GHz), respectively. The metamaterial property of the designed absorber structure has been discussed by using dispersion diagram plot. The designed absorber structure exhibits wide-angle absorption at various oblique incidence angle for both TM and TE polarizations. The absorption mechanism of the designed absorber structure has been analyzed through electric field and surface current distribution plots. The input impedance of the designed absorber (375.67 Ω at 4.48GHz and 346.73 Ω at 10.43GHz) nearly matches the free space impedance. The proposed absorber structure is fabricated and measured. Simulated and measured results are in good agreement with each other.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Planar, Layered Ultra-wideband Metamaterial Absorber for Microwave Frequencies

In this paper, an ultra-wideband metamaterial absorber is designed and simulated. The proposed absorber is planar and low profile. It is made of a copper sheet coated with two dielectric layers. Each unit cell of the metamaterial structure is composed of multiple metallic split rings, which are patterned on the top and middle boundaries of the dielectrics. The designed absorber utilizes differe...

متن کامل

Design, Fabrication and Measurement of Two-Layered Quadruple-Band Microwave Metamaterial Absorber

The design, simulation, fabrication, and measurement of two structures of metamaterial absorbers (MA) is investigated at microwave frequency in this paper. By stacking of one layer structure on the top of each other, a two-layered structure is generated. The unit cell at each layer consisting of two sets of various circular and square patches are designed so that the structure exhibit quad band...

متن کامل

A Fractal-based Compact Broadband Polarization Insensitive Metamaterial Absorber Using Lumped Resistors

In this article, a broadband polarization insensitive metamaterial absorber has been proposed for C-band (4–8 GHz) applications using lumped resistors. The unit cell of the proposed structure is based on an inverted Minkowski fractal loop, where four lumped resistors are mounted to obtain a broad absorption band at the expense of 5 mm thick dielectric substrate, which is only 0.033k0 with respe...

متن کامل

Electromagnetic tuning of resonant transmission in magnetoelastic metamaterials

Articles you may be interested in Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator Adjustable low frequency and broadband metamaterial absorber based on magnetic rubber plate and cross resonator J. Ultra-broadband electromagnetically induced transparency using tunable self-asymmetric planar metamaterials Tuning limitations of the vol...

متن کامل

Dual-band, Dynamically Tunable Plasmonic Metamaterial Absorbers Based on Graphene for Terahertz Frequencies

In this paper, a compact plasmonic metamaterial absorber for terahertz frequencies is proposed and simulated. The absorber is based on metamaterial graphene structures, and benefits from dynamically controllable properties of graphene. Through patterning graphene layers, plasmonic resonances are tailored to provide a dual band as well as an improved bandwidth absorption. Unit cell of the design...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017