Discovery of Desketoraloxifene Analogues as Inhibitors of Mammalian, Pseudomonas aeruginosa, and NAPE Phospholipase D Enzymes
نویسندگان
چکیده
Phospholipase D (PLD) hydrolyses cellular lipids to produce the important lipid second messenger phosphatidic acid. A PLD enzyme expressed by Pseudomonas aeruginosa (PldA) has been shown to be important in bacterial infection, and NAPE-PLD has emerged as being key in the synthesis of endocannabinoids. In order to better understand the biology and therapeutic potential of these less explored PLD enzymes, small molecule tools are required. Selective estrogen receptor modulators (SERMs) have been previously shown to inhibit mammalian PLD (PLD1 and PLD2). By targeted screening of a library of SERM analogues, additional parallel synthesis, and evaluation in multiple PLD assays, we discovered a novel desketoraloxifene-based scaffold that inhibited not only the two mammalian PLDs but also structurally divergent PldA and NAPE-PLD. This finding represents an important first step toward the development of small molecules possessing universal inhibition of divergent PLD enzymes to advance the field.
منابع مشابه
Harnessing the anti-inflammatory potential of palmitoylethanolamide.
Palmitoylethanolamide (PEA) is a peroxisome proliferator-activated receptor alpha (PPAR-α) ligand that exerts anti-inflammatory, analgesic and neuroprotective actions. PEA is synthetized from phospholipids through the sequential actions of N-acyltransferase and N-acylphosphatidylethanolamine-preferring phospholipase D (NAPE-PLD), and its actions are terminated by its hydrolysis by two enzymes, ...
متن کاملLocalization of N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) expression in mouse brain: A new perspective on N-acylethanolamines as neural signaling molecules.
N-acylethanolamines (NAEs) are membrane-derived lipids that are utilized as signaling molecules in the nervous system (e.g., the endocannabinoid anandamide). An N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) that catalyzes formation of NAEs was recently identified as a member of the zinc metallohydrolase family of enzymes. NAPE-PLD(-/-) mice have greatly reduced brain levels of long...
متن کاملMammalian cells stably overexpressing N-acylphosphatidylethanolamine-hydrolysing phospholipase D exhibit significantly decreased levels of N-acylphosphatidylethanolamines.
In animal tissues, NAEs (N-acylethanolamines), including N-arachidonoylethanolamine (anandamide), are primarily formed from their corresponding NAPEs (N-acylphosphatidylethanolamines) by a phosphodiesterase of the PLD (phospholipase D) type (NAPE-PLD). Recently, we cloned cDNAs of NAPE-PLD from mouse, rat and human [Okamoto, Morishita, Tsuboi, Tonai and Ueda (2004) J. Biol. Chem. 279, 5298-5305...
متن کاملBiochemical and genetic evidence for phospholipase C activity in Mycobacterium ulcerans.
This study reports the existence of phospholipase C and D enzymatic activities in Mycobacterium ulcerans cultures as determined by use of thin-layer chromatography to detect diglycerides in hydrolysates of radiolabeled phosphatidylcholine. M. ulcerans DNA sequences homologous to the genes encoding phospholipase C in Mycobacterium tuberculosis and Pseudomonas aeruginosa were identified by sequen...
متن کاملNAPE Phospholipase D Enzyme and Recent Advances in the Understanding of its Biological Properties
N-acylethanolamines (NAEs) are lipids obtained from the membranes that are used as signalling molecules in the nervous system for e.g the endocannabinoid anandamide. An N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) that catalyzes formation of NAEs was recently identified as a member of the zinc metallohydrolase family of enzymes. Immunocytochemical analysis has revealed intense NAP...
متن کامل