Classical , Nonlocal , and Fractional Diffusion Equations on Bounded Domains
نویسنده
چکیده
The purpose of this paper is to compare the solutions of one-dimensional boundary value problems corresponding to classical, fractional and nonlocal diffusion on bounded domains. The latter two diffusions are viable alternatives for anomalous diffusion, when Fick’s first law is an inaccurate model. In the case of nonlocal diffusion, a generalization of Fick’s first law in terms of a nonlocal flux is demonstrated to hold. A relationship between nonlocal and fractional diffusion is also reviewed, where the order of the fractional Laplacian can lie in the interval (0, 2]. The contribution of this paper is to present boundary value problems for nonlocal diffusion including a variational formulation that leads to a conforming finite element method using piecewise discontinuous shape functions. The nonlocal Dirichlet and Neumann boundary conditions used represent generalizations of the classical boundary conditions. Several examples are given where the effect of nonlocality is studied. The relationship between nonlocal and fractional diffusion explains that the numerical solution of boundary value problems, where the order of the fractional Laplacian can lie in the interval (0, 2], is possible.
منابع مشابه
Remarks on the fractional Laplacian with Dirichlet boundary conditions and applications
We prove nonlinear lower bounds and commutator estimates for the Dirichlet fractional Laplacian in bounded domains. The applications include bounds for linear drift-diffusion equations with nonlocal dissipation and global existence of weak solutions of critical surface quasi-geostrophic equations.
متن کاملAnalysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints
We exploit a recently developed nonlocal vector calculus to provide a variational analysis for a general class of nonlocal diffusion problems given by a linear integral equation on bounded domains in R. The ubiquity of the nonlocal operator is illustrated by a number of applications ranging from continuum mechanics to graph theory. These applications elucidate different interpretations of the o...
متن کاملNonexistence Results for Nonlocal Equations with Critical and Supercritical Nonlinearities
We prove nonexistence of nontrivial bounded solutions to some nonlinear problems involving nonlocal operators of the form Lu(x) = − ∑ aij∂iju+ PV ∫ Rn (u(x)− u(x+ y))K(y)dy. These operators are infinitesimal generators of symmetric Lévy processes. Our results apply to even kernels K satisfying that K(y)|y| is nondecreasing along rays from the origin, for some σ ∈ (0, 2) in case aij ≡ 0 and for ...
متن کاملSharp boundary behaviour of solutions to semilinear nonlocal elliptic equations
We investigate quantitative properties of nonnegative solutions u(x) ≥ 0 to the semilinear diffusion equation Lu = f(u), posed in a bounded domain Ω ⊂ R with appropriate homogeneous Dirichlet or outer boundary conditions. The operator L may belong to a quite general class of linear operators that include the standard Laplacian, the two most common definitions of the fractional Laplacian (−∆) (0...
متن کاملAn Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کامل