A high-throughput assay for Tn5 Tnp-induced DNA cleavage.
نویسندگان
چکیده
Transposition causes genomic instability by mobilizing DNA elements. This phenomenon is mechanistically related to other DNA rearrangements, such as V(D)J recombination and retroviral DNA integration. A conserved active site architecture within the transposase/integrase superfamily catalyzes these distinct phenomena. The Tn5 transposase (Tnp) falls within this protein class, and many intermediates of the Tn5 transposition reaction have been characterized. Here, we describe a method for the rapid identification of Tn5 Tnp small molecule effectors. This high-throughput screening strategy will aid in the identification of compounds that perturb Tnp-induced DNA cleavage. This method is advantageous, since it identifies effectors that specifically inhibit catalysis without inhibiting Tnp-DNA binding interactions. Effectors identified using this method will serve as a valuable aid both in the isolation and characterization of metal-bound reaction intermediates and in co-crystallization studies involving the effector, Tnp and DNA, to identify the structural basis of the interaction. Furthermore, since Tn5 Tnp shares a similar active site architecture to other transposase/integrase superfamily members, this strategy and any effectors identified using this method will be readily applicable to these other systems.
منابع مشابه
Mutational analysis of the base flipping event found in Tn5 transposition.
This work identifies novel structure-function relationships between Tn5 transposase (Tnp) and its DNA recognition sequence. The Tn5 Tnp-DNA co-crystal structure revealed the protein-DNA contacts of the post-cleavage complex (Davies, D. R., Goryshin, I. Y., Reznikoff, W. S., and Rayment, I. (2000) Science 289, 77-85). One of the most striking features of this complex is the rotation of thymine 2...
متن کاملTrans-acting transposase mutant from Tn5.
Transposition of Tn5 and of its component insertion sequence IS50R is regulated through the action of two proteins it encodes: a cis-acting transposase, Tnp, and a trans-acting inhibitor of transposition, Inh. The mechanism of the cis-acting Tnp and the relevance of inhibition to cis action have been addressed in the current study. A specific colony morphology assay for transposition of Tn5 was...
متن کاملDefining characteristics of Tn5 Transposase non-specific DNA binding
While non-specific DNA plays a role in target localization for many recombinases, transcription factors and restriction enzymes, the importance of non-specific DNA interactions for transposases has not been investigated. Here, we discuss non-specific DNA-Tn5 Transposase (Tnp) interactions and suggest how they stabilize the Tnp and modulate Tnp localization of the 19 bp Tnp recognition end seque...
متن کاملMolecular genetic analysis of transposase-end DNA sequence recognition: cooperativity of three adjacent base-pairs in specific interaction with a mutant Tn5 transposase.
Transposition of Tn5 and IS50 requires the specific binding of transposase (Tnp) to the end inverted repeats, the outside end (OE) and the inside end (IE). OE and IE have 12 identical base-pairs and seven non-identical base-pairs. Previously we described the isolation of a Tnp mutant, EK54, that shows an altered preference for OE versus IE compared to wild-type (wt) Tnp. EK54 enhances OE recogn...
متن کاملEscherichia coli DNA topoisomerase I copurifies with Tn5 transposase, and Tn5 transposase inhibits topoisomerase I.
Tn5 transposase (Tnp) overproduction is lethal to Escherichia coli. Genetic evidence suggested that this killing involves titration of E. coli topoisomerase I (Topo I). Here, we present biochemical evidence that supports this model. Tn5 Tnp copurifies with Topo I while nonkilling derivatives of Tnp, Delta37Tnp and Delta55Tnp (Inhibitor [Inh]), show reduced affinity or no affinity, respectively,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 32 10 شماره
صفحات -
تاریخ انتشار 2004