Biomechanical implications of skeletal muscle hypertrophy and atrophy: a musculoskeletal model
نویسندگان
چکیده
Muscle hypertrophy and atrophy occur frequently as a result of mechanical loading or unloading, with implications for clinical, general, and athletic populations. The effects of muscle hypertrophy and atrophy on force production and joint moments have been previously described. However, there is a paucity of research showing how hypertrophy and atrophy may affect moment arm (MA) lengths. The purpose of this model was to describe the mathematical relationship between the anatomical cross-sectional area (ACSA) of a muscle and its MA length. In the model, the ACSAs of the biceps brachii and brachialis were altered to hypertrophy up to twice their original size and to atrophy to one-half of their original size. The change in MA length was found to be proportional to the arcsine of the square root of the change in ACSA. This change in MA length may be a small but important contributor to strength, especially in sports that require large joint moments at slow joint angular velocities, such as powerlifting. The paradoxical implications of the increase in MA are discussed, as physiological factors influencing muscle contraction velocity appear to favor a smaller MA length for high velocity movements but a larger muscle MA length for low velocity, high force movements.
منابع مشابه
تأثیر سه ماه تمرین هوازی بر مسیر پیام رسانی Wnt عضله اسکلتی موشهای صحرایی نر
Background: Atrophy in skeletal muscle plays an important role in disease-related tissue dysfunction such as sarcopenia. The Wnt-signaling pathway has been shown to be critical for skeletal muscle development. Current evidence suggests that exercise trainings may alter hypertrophy-related signaling in skeletal muscle. Therefore, the purpose of this study was investigating the effect of three mo...
متن کاملEctopic expression of IGF-I and Shh by skeletal muscle inhibits disuse-mediated skeletal muscle atrophy and bone osteopenia in vivo.
The loss of normal weight-bearing activity, which occurs during bed rest, limb immobilization, and spaceflight, stimulates a catabolic response within the musculoskeletal system, which results in a loss of skeletal muscle mass and bone mineral. The mechanism by which loading of muscle and bone is sensed and translated into signals controlling tissue formation remains a major question in the fie...
متن کاملUrsolic Acid Improve Skeletal Muscle Hypertrophy by Increasing of PAX7, Myod and Myogenin Expression and Satellite Cells Proliferation in Native Broiler Chickens
Ursolic acid (UA) is known as a naturally occurring triterpene pentacyclic compound in some medicinal herbs including savory that affects the skeletal muscle. In the current study, the effect of UA was evaluated on C2C12 cells and satellite cells (SCs) isolated from native broiler chicks. First in the in vitro experiment, the C2C12 cell line obtained from the Stem Cell Technology Research Cente...
متن کاملMR imaging of muscles of mastication.
High-field MR imaging was used to study structural and physiologic alterations involving the muscles of mastication in 46 patients. Muscular abnormalities were often detected incidentally in conjunction with lesions of the CNS, cranial nerves, facial bones, and/or temporomandibular joint (TMJ). Specific pathologic alterations observed included anomalies of musculoskeletal development, muscle hy...
متن کاملMyoblast models of skeletal muscle hypertrophy and atrophy.
PURPOSE OF REVIEW To highlight recent breakthroughs and controversies in the use of myoblast models to uncover cellular and molecular mechanisms regulating skeletal muscle hypertrophy and atrophy. RECENT FINDINGS Myoblast cultures provide key mechanistic models of the signalling and molecular pathways potentially employed by skeletal muscle in-vivo to regulate hypertrophy and atrophy. Recentl...
متن کامل