Sparse Hidden Markov Models for Surgical Gesture Classification and Skill Evaluation

نویسندگان

  • Lingling Tao
  • Ehsan Elhamifar
  • Sanjeev Khudanpur
  • Gregory D. Hager
  • René Vidal
چکیده

We consider the problem of classifying surgical gestures and skill level in robotic surgical tasks. Prior work in this area models gestures as states of a hidden Markov model (HMM) whose observations are discrete, Gaussian or factor analyzed. While successful, these approaches are limited in expressive power due to the use of discrete or Gaussian observations. In this paper, we propose a new model called sparse HMMs whose observations are sparse linear combinations of elements from a dictionary of basic surgical motions. Given motion data from many surgeons with different skill levels, we propose an algorithm for learning a dictionary for each gesture together with an HMM grammar describing the transitions among different gestures. We then use these dictionaries and the grammar to represent and classify new motion data. Experiments on a database of surgical motions acquired with the da Vinci system show that our method performs on par with or better than state-of-the-art methods.This suggests that learning a grammar based on sparse motion dictionaries is important in gesture and skill classification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Task versus Subtask Surgical Skill Evaluation of Robotic Minimally Invasive Surgery

Evaluating surgical skill is a time consuming, subjective, and difficult process. This paper compares two methods of identifying the skill level of a subject given motion data from a benchtop surgical task. In the first method, we build discrete Hidden Markov Models at the task level, and test against these models. In the second method, we build discrete Hidden Markov Models of surgical gesture...

متن کامل

Toward Personalized Training and Skill Assessment in Robotic Minimally Invasive Surgery

Despite the immense technology advancement in the surgeries the criteria of assessing the surgical skills still remains based on subjective standards. With the advent of robotic-assisted minimally invasive surgery (RMIS), new opportunities for objective and autonomous skill assessment is introduced. Previous works in this area are mostly based on structured-based method such as Hidden Markov Mo...

متن کامل

Speech enhancement based on hidden Markov model using sparse code shrinkage

This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...

متن کامل

Learning Shared, Discriminative Dictionaries for Surgical Gesture Segmentation and Classification

We propose a surgical gesture segmentation and classification method based on shared, discriminative, sparse dictionary learning, which can be used to effectively analyze complex surgical gestures recorded by the da Vinci robotic surgical system. Rather than learning a separate dictionary for each gesture in an unsupervised manner, we propose an algorithm for jointly learning a common overcompl...

متن کامل

3D Hand Motion Evaluation Using HMM

Gesture and motion recognition are needed for a variety of applications. The use of human hand motions as a natural interface tool has motivated researchers to conduct research in the modeling, analysis and recognition of various hand movements. In particular, human-computer intelligent interaction has been a focus of research in vision-based gesture recognition. In this work, we introduce a 3-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012