Learning of Generalized Low-Rank Models: A Greedy Approach
نویسندگان
چکیده
Learning of low-rank matrices is fundamental to many machine learning applications. A state-of-the-art algorithm is the rank-one matrix pursuit (R1MP). However, it can only be used in matrix completion problems with the square loss. In this paper, we develop a more flexible greedy algorithm for generalized low-rank models whose optimization objective can be smooth or nonsmooth, general convex or strongly convex. The proposed algorithm has low per-iteration time complexity and fast convergence rate. Experimental results show that it is much faster than the state-of-the-art, with comparable or even better prediction performance.
منابع مشابه
Greedy Learning of Generalized Low-Rank Models
Learning of low-rank matrices is fundamental to many machine learning applications. A state-ofthe-art algorithm is the rank-one matrix pursuit (R1MP). However, it can only be used in matrix completion problems with the square loss. In this paper, we develop a more flexible greedy algorithm for generalized low-rank models whose optimization objective can be smooth or nonsmooth, general convex or...
متن کاملGreedy low-rank methods for solving general linear matrix equations‡
This work is concerned with the numerical solution of large-scale linear matrix equations A1XB T 1 + · · ·+ AKXB K = C. The most straightforward approach computes X ∈ Rm×n from the solution of an mn×mn linear system, typically limiting the feasible values of m,n to a few hundreds at most. Our new approach exploits the fact that X can often be well approximated by a low-rank matrix. It combines ...
متن کاملFast Multivariate Spatio-temporal Analysis via Low Rank Tensor Learning
Accurate and efficient analysis of multivariate spatio-temporal data is critical in climatology, geology, and sociology applications. Existing models usually assume simple inter-dependence among variables, space, and time, and are computationally expensive. We propose a unified low rank tensor learning framework for multivariate spatio-temporal analysis, which can conveniently incorporate diffe...
متن کاملNon-Convex Projected Gradient Descent for Generalized Low-Rank Tensor Regression
In this paper, we consider the problem of learning high-dimensional tensor regression problems with low-rank structure. One of the core challenges associated with learning high-dimensional models is computation since the underlying optimization problems are often non-convex. While convex relaxations could lead to polynomialtime algorithms they are often slow in practice. On the other hand, limi...
متن کاملTruncated low-rank methods for solving general linear matrix equations
This work is concerned with the numerical solution of large-scale linear matrix equations A1XB T 1 + · · ·+ AKXB K = C. The most straightforward approach computes X ∈ Rm×n from the solution of an mn×mn linear system, typically limiting the feasible values of m,n to a few hundreds at most. Our new approach exploits the fact that X can often be well approximated by a low-rank matrix. It combines ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1607.08012 شماره
صفحات -
تاریخ انتشار 2016