Defective copper-induced trafficking and localization of the Menkes protein in patients with mild and copper-treated classical Menkes disease.
نویسندگان
چکیده
Menkes disease is an X-linked disorder of copper metabolism. An overall copper deficiency reduces the activity of copper-dependent enzymes accounting for the clinical presentation of affected individuals. The Menkes gene product (MNK) is a P-type ATPase and is considered to be the main copper efflux protein in most cells. The protein is located primarily at the trans -Golgi network (TGN), but relocalizes to the plasma membrane in elevated copper conditions to expel the excess copper from the cell. Here we report the first missense mutation which causes mild Menkes disease, a mutation in a successfully copper-treated classical Menkes patient and the effect of each mutation on the localization of MNK within the cell. Using western blot analysis, MNK was detectable in cells from both patients, but appeared to be mislocalized in the treated case. In the mild Menkes patient, the protein appeared to be located in the TGN but failed to redistribute towards the cell periphery in response to copper. This is the first description of a mutation in a Menkes patient which affects the trafficking of MNK, and the loss of this process is consistent with the clinical phenotype.
منابع مشابه
Intracellular localization and loss of copper responsiveness of Mnk, the murine homologue of the Menkes protein, in cells from blotchy (Mo blo) and brindled (Mo br) mouse mutants.
Menkes disease is an X-linked copper deficiency disorder that results from mutations in the ATP7A ( MNK ) gene. A wide range of disease-causing mutations within ATP7A have been described, which lead to a diversity of phenotypes exhibited by Menkes patients. The mottled locus ( Mo, Atp7a, Mnk ) represents the murine homologue of the ATP7A gene, and the mottled mutants exhibit a diversity of phen...
متن کاملCharacterization of the Menkes protein copper-binding domains and their role in copper-induced protein relocalization.
Menkes disease is a fatal X-linked disorder of copper metabolism. The gene defective in Menkes disease (ATP7A) encodes a copper transporting P-type ATPase (MNK or ATP7A) with six copper-binding domains at its N-terminus. MNK is normally localized to the trans -Golgi network in cultured cells, but relocates to the plasma membrane in the presence of elevated extracellular copper. In this study, t...
متن کاملA copper treatable Menkes disease mutation associated with defective trafficking of a functional Menkes copper ATPase.
Copper dependency in humans is most dramatically illustrated in Menkes disease, an X linked recessive copper deficiency disorder that is generally lethal in early childhood. 2 Menkes disease is caused by mutations in a transmembrane copper transporting P type ATPase, MNK (or ATP7A), which is expressed in virtually all non-hepatic tissues. Studies using cultured cells suggest that MNK is located...
متن کاملRetinal localization and copper-dependent relocalization of the Wilson and Menkes disease proteins.
PURPOSE Menkes and Wilson diseases are associated with retinal degeneration. The Menkes and Wilson genes are homologous copper transporters, but differences in their expression pattern lead to different disease manifestations. To determine whether the Wilson and Menkes genes may act locally in the retina, this study was undertaken to assess retinal Wilson and Menkes expression and localization....
متن کاملEssential role for Atox1 in the copper-mediated intracellular trafficking of the Menkes ATPase.
The metallochaperone Atox1 directly interacts with the copper-transporting ATPases and plays a critical role in perinatal copper homeostasis. To determine the cell biological mechanisms of Atox1 function, intracellular copper metabolism, and Menkes ATPase abundance, localization and trafficking were examined in immortalized fibroblast cell lines derived from Atox1(+/+) and Atox1(-/-) embryos. C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 8 8 شماره
صفحات -
تاریخ انتشار 1999