Resonant coupling between surface vibrations and electronic states in silicon nanocrystals at the strong confinement regime.
نویسندگان
چکیده
A striking correlation between infrared photoinduced absorption spectra and the photoluminescence from silicon nanocrystals indicates that quantized electronic sublevels of the nanocrystals are resonantly coupled to surface vibrational modes via a polarization field produced by coherent longitudinal polar vibrations. Our experimental results and model support the assumption that the mechanism responsible for the efficient photoluminescence from silicon nanocrystals should be assigned to inhibition of nonradiative channels rather than enhancement of radiative channels.
منابع مشابه
Impact of Silicon Wafer Orientation on the Performance of Metal Source/Drain MOSFET in Nanoscale Regime: a Numerical Study
A comprehensive study of Schottky barrier MOSFET (SBMOSFET) scaling issue is performed to determine the role of wafer orientation and structural parameters on the performance of this device within Non-equilibrium Green's Function formalism. Quantum confinement increases the effective Schottky barrier height (SBH). (100) orientation provides lower effective Schottky barrier height in compa...
متن کاملEnhanced coupling of electronic and photonic states in a microcavity- quantum dot system
1. ABSTRACT Spherical microcavities consisting of a dielectric material show unique optical characteristics as resonators in combination with semiconductor nanoparticles. A high quality factor results in a very narrow bandwidth of the resonant modes (whispering-gallery modes) inside the microcavity. The polystyrene microspheres are coated with one monolayer of CdTe nanocrystals which offer a hi...
متن کاملTunability Limit of Photoluminescence in Colloidal Silicon Nanocrystals
Luminescent silicon nanocrystals (Si NCs) have attracted tremendous research interest. Their size dependent photoluminescence (PL) shows great promise in various optoelectronic and biomedical applications and devices. However, it remains unclear why the exciton emission is limited to energy below 2.1 eV, no matter how small the nanocrystal is. Here we interpret a nanosecond transient yellow emi...
متن کاملHybrid superconductor-semiconductor devices made from self-assembled SiGe nanocrystals on silicon.
The epitaxial growth of germanium on silicon leads to the self-assembly of SiGe nanocrystals by a process that allows the size, composition and position of the nanocrystals to be controlled. This level of control, combined with an inherent compatibility with silicon technology, could prove useful in nanoelectronic applications. Here, we report the confinement of holes in quantum-dot devices mad...
متن کاملSurface ligands increase photoexcitation relaxation rates in CdSe quantum dots.
Understanding the pathways of hot exciton relaxation in photoexcited semiconductor nanocrystals, also called quantum dots (QDs), is of paramount importance in multiple energy, electronics and biological applications. An important nonradiative relaxation channel originates from the nonadiabatic (NA) coupling of electronic degrees of freedom to nuclear vibrations, which in QDs depend on the confi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 5 12 شماره
صفحات -
تاریخ انتشار 2005