Bioremediation of Fluorophenols by Glycosylation with Immobilized Marine Microalga Amphidinium Crassum

نویسندگان

  • Kei Shimoda
  • Hiroki Hamada
چکیده

Fluorophenols are used as agrochemicals and released into environment as pollutants. Cultured marine microalga Amphidinium crassum (Gymnodinium) glucosylated 2-fluorophenol (1), 3-fluorophenol (2), and 4-fluorophenol (3) to the corresponding β-D-glucosides, ie, 2-fluorophenyl β-D-glucoside (4, 60 μg/g cells), 3-fluorophenyl β-D-glucoside (5, 20 μg/g cells), and 4-fluorophenyl β-D-glucoside (6, 40 μg/g cells). On the other hand, 2-, 3-, and 4-fluorophenols were efficiently converted by immobilized A. crassum in sodium alginate gel to give their β-D-glucosides in higher yields (4: 140 μg/g cells; 5: 60 μg/g cells; 6: 100 μg/g cells). In repetitive batch use, the immobilized cells of A. crassum maintained the potential for the glucosylation of the substrate fluorophenol after 5 times of usage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bioremediation of Bisphenol A by Glycosylation with Immobilized Marine Microalga Amphidinium crassum ——Bioremediation of Bisphenol a by Immobilized Cells

Glycosylation of bisphenol A, which is an endocrine disrupting chemical, was investigated using immobilized marine microalga and plant cells from the viewpoint of bioremediation of bisphenol A. Immobilized marine microalga of Amphidinium crassum glucosylated bisphenol A to the corresponding glucoside. On the other hand, bisphenol A was glycosylated to its glucoside, diglycoside, gentiobioside, ...

متن کامل

Bioremediation of Bisphenol A and Benzophenone by Glycosylation with Immobilized Marine Microalga Pavlova sp.

Cultured cells of Pavlova sp. glycosylated bisphenol A to its mono-glucoside, 2-(4-beta-D-glucopyranosyloxyphenyl)-2-hydroxyphenylpropane (9%). Use of immobilized Pavlova cells in sodium alginate gel improved yield of the product (17%). On the other hand, Pavlova cell cultures converted benzophenone into diphenylmethanol (49%) and diphenylmethyl beta-D-glucopyranoside (6%). Incubation of benzop...

متن کامل

Cadmium, Nickel and Vanadium Accumulation by Three Strains of Marine Bacteria

Three marine bacteria, Pseudomonas putida PTCC 1664, Bacillus cereus  PTTC 1665 and Pseudomonas pseudoalkaligenes PTCC 1666 isolated from the East Anzali wetland sediments of the Caspian Sea, were resistant to heavy metals of Cadmium (Cd), Nickel (Ni) and Vanadium (V). Pseudomonas pseudoalkaligenes PTCC 1666 was found to be resistant to all 3 metals Ni, Cd, V. Heavy metal uptake was determined ...

متن کامل

Amphidinolide C2, New Macrolide from Marine Dinoflagellate Amphidinium Species

A new cytotoxic 25-membered macrolide, amphidinolide C2 (1), has been isolated from marine dinoflagellate Amphidinium sp. (Y-71 strain), and the structure 1 was elucidated on the basis of spectroscopic data and chemical means.

متن کامل

Glycosylation of Fluorophenols by Plant Cell Cultures

Fluoroaromatic compounds are used as agrochemicals and released into environment as pollutants. Glycosylation of 2-, 3-, and 4-fluorophenols using plant cell cultures of Nicotiana tabacum was investigated to elucidate their potential to metabolize these compounds. Cultured N. tabacum cells converted 2-fluorophenol into its beta-glucoside (60%) and beta-gentiobioside (10%). 4-Fluorophenol was al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2010