Harmonic Maps with Prescribed Singularities on Unbounded Domains

نویسنده

  • GILBERT WEINSTEIN
چکیده

The Einstein/Abelian-Yang-Mills Equations reduce in the stationary and axially symmetric case to a harmonic map with prescribed singularities φ : R \Σ → H C into the (k+1)-dimensional complex hyperbolic space. In this paper, we prove the existence and uniqueness of harmonic maps with prescribed singularities φ : R \ Σ → H, where Σ is an unbounded smooth closed submanifold of R of codimension at least 2, and H is a real, complex, or quaternionic hyperbolic space. As a corollary, we prove the existence of solutions to the reduced stationary and axially symmetric Einstein/Abelian-Yang-Mills Equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Dirichlet Problem for Harmonic Maps with Prescribed Singularities

Let (M, g) be a classical Riemannian globally symmetric space of rank one and non-compact type. We prove the existence and uniqueness of solutions to the Dirichlet problem for harmonic maps into (M, g) with prescribed singularities along a closed submanifold of the domain. This generalizes our previous work where such maps into the hyperbolic plane were constructed. This problem, in the case wh...

متن کامل

Harmonic Maps with Prescribed Singularities into Hadamard Manifolds

Let M a Riemannian manifold of dimension m ≥ 3, let Σ be a closed smooth submanifold of M of co-dimension at least 2, and let H be a Hadamard manifold with pinched sectional curvatures. We prove the existence and uniqueness of harmonic maps φ : M \ Σ → H with prescribed singularities along Σ. When M = R, and H = H C , the complex hyperbolic space, this result has applications to the problem of ...

متن کامل

N - Black Hole Stationary Andaxially Symmetric Solutions Ofthe Einstein - Maxwell

It is well-known that the Einstein-Maxwell equations reduce in the stationary and axially symmetric case to an axially symmetric harmonic map with prescribed singularities ': R 3 n ! H 2 C , where is a subset of the axis of symmetry, and H 2 C is the complex hyperbolic plane. Motivated by this problem, we prove the existence and uniqueness of harmonic maps with prescribed singularities ': R n n...

متن کامل

N-black Hole Stationary and Axially Symmetric Solutions of the Einstein/maxwell Equations

The Einstein/Maxwell equations reduce in the stationary and axially symmetric case to a harmonic map with prescribed singularities φ : R \ Σ → H2C , where Σ is a subset of the axis of symmetry, and H2C is the complex hyperbolic plane. Motivated by this problem, we prove the existence and uniqueness of harmonic maps with prescribed singularities φ : R \ Σ → H, where Σ is a submanifold of R of co...

متن کامل

Singularities of Harmonic Maps

This article surveys research on the existence, structure, behavior, and asymptotics of singularities of harmonic maps.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995