Multiscale Denoising of Photographic Images
نویسندگان
چکیده
Signal acquisition is a noisy business. In photographic images, there is noise within the light intensity signal (e.g., photon noise), and additional noise can arise within the sensor (e.g., thermal noise in a CMOS chip), as well as in subsequent processing (e.g., quantization). Image noise can be quite noticeable, as in images captured by inexpensive cameras built into cellular telephones, or imperceptible, as in images captured by professional digital cameras. Stated simply, the goal of image denoising is to recover the “true” signal (or its best approximation) from these noisy acquired observations. All such methods rely on understanding and exploiting the differences between the properties of signal and noise. Formally, solutions to the denoising problem rely on three fundamental components: a signal model, a noise model, and finally a measure of signal fidelity (commonly known as the objective function) that is to be minimized. In this chapter, we’ll describe the basics of image denoising, with an emphasis on signal properties. For noise modeling, we’ll restrict ourselves to the case in which images are corrupted by additive, white, Gaussian noise that is, we’ll assume each pixel is contaminated by adding a sample drawn independently from a Gaussian probability distribution of fixed variance. A variety of other noise models and corruption processes are considered in Chapter 7. Throughout, we’ll use the well known mean squared error (MSE) measure as an objective function. We develop a sequence of three image denoising methods, motivating each one by observing a particular property of photographic images that emerges when they are decomposed into subbands at different spatial scales. We’ll examine each of these properties quantitatively by examining statistics across a training set of photographic images and noise samples. And for each property, we’ll use this quantitative characterization to develop two example denoising functions: a binary threshold function that retains or discards each multi-scale coefficient depending on whether it is more likely to be dominated by noise or signal, and a continuous-valued function that multiplies each coefficient by an optimized scalar value. Although these methods are quite simple, they capture many of the concepts that are used in state-of-the-art denoising systems. Toward the end of the chapter, we briefly describe several alternative approaches.
منابع مشابه
Deblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملPlatelet-based MPLE algorithm for denoising of SPECT images: phantom and patient study
Introduction: In this study the evaluation of a Platelet-based Maximum Penalized Likelihood Estimation (MPLE) for denoising SPECT images was performed and compared with other denoising methods such as Wavelets or Butterworth filtration. Platelet-based MPLE factorization as a multiscale decomposition approach has been already proposed for better edges and surfaces representation due to Poi...
متن کاملMultiscale TV flow with applications to fast denoising and registration
Medical images consist of image structures of varying scales, with different scales representing different components. For example, in cardiac images, left ventricle, myocardium and blood pool are the large scale structures, whereas infarct and noise are represented by relatively small scale structures. Thus, extracting different scales in an image i.e. multiscale image representation, is a val...
متن کاملAn Efficient Curvelet Framework for Denoising Images
Wiener filter suppresses noise efficiently. However, it makes the out image blurred. Curvelet preserves the edges of natural images perfectly, but, it produces visual distortion artifacts and fuzzy edges to the restored image, especially in homogeneous regions of images. In this paper, a new image denoising framework based on Curvelet transform and wiener filter is proposed, which can stop nois...
متن کاملMultiscale Blind Image Restoration with a New Method
A new method, based on the normal shrink and modified version of Katssagelous and Lay, is proposed for multiscale blind image restoration. The method deals with the noise and blur in the images. It is shown that the normal shrink gives the highest S/N (signal to noise ratio) for image denoising process. The multiscale blind image restoration is divided in two sections. The first part of this pa...
متن کامل