A Composite Photocatalyst Based on Hydrothermally-Synthesized Cu2ZnSnS4 Powders

نویسندگان

  • Shih-Jen Lin
  • Jyh-Ming Ting
  • Kuo-Chin Hsu
  • Yaw-Shyan Fu
چکیده

A novel composite photocatalyst based on Cu₂ZnSnS₄ (CZTS) powders was synthesized and investigated for use as a photocatalyst. CZTS powders were first made using a conventional hydrothermal method and were then used to grow silver nanoparticles hybridized onto the CZTS under various conditions through a microwave-assisted hydrothermal process. After the obtained samples were subsequently mixed with 1T-2H MoS₂, the three synthesized component samples were characterized using X-ray diffractometry (XRD), scanning electron microscopy, transmission electron microscopy (FE-SEM, FE-TEM), UV-visible spectroscopy (UV-Vis), Brunauer-Emmet-Teller (BET), photoluminescence spectroscopy (PL), and X-ray photoelectron spectroscopy (XPS). The resulting samples were also used as photocatalysts for the degradation of methylene blue (MB) under a 300 W halogen lamp simulating sunlight with ~5% UV light. The photodegradation ability was greatly enhanced by the addition of Ag and 1T-2H MoS₂. Excellent photodegradation of MB was obtained under visible light. The effects of material characteristics on the photodegradation were investigated and discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surfactant-Tuned Phase Structure and Morphologies of Cu2ZnSnS4 Hierarchical Microstructures and Their Visible-Light Photocatalytic Activities

Cu2ZnSnS4 (CZTS) hierarchical microstructures were synthesized by using a facile and nontoxic hydrothermal route, which were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM), Raman spectra, and UV-Vis absorption spectra. The results and analysis show that surfactants used in the hydrothermal process have significant effect on the phase structures, morphologies...

متن کامل

Microwave fabrication of Cu2ZnSnS4 nanoparticle and its visible light photocatalytic properties

Cu2ZnSnS4 nanoparticle with an average diameter of approximately 31 nm has been successfully synthesized by a time effective microwave fabrication method. The crystal structure, surface morphology, and microstructure of the Cu2ZnSnS4 nanoparticle were characterized. Moreover, the visible light photocatalytic ability of the Cu2ZnSnS4 nanoparticle toward degradation of methylene blue (MB) was als...

متن کامل

Photo-Catalytic Nanometer Composite-Crystal TiO2 Powder Synthesized by Two-Step Method

TiCl4, ammonia, inorganic salts as raw material, nanometer composite-crystal TiO2 powders were synthesized by two-step chemical method. Precursors were crystallized with different phase and stable composite-crystal TiO2 with anatase and rutile phase was prepared at low temperature. Quantitative control of crystal phase was realized. Remarkable factors includ...

متن کامل

Solvent-free synthesis of Cu2ZnSnS4 nanocrystals: a facile, green, up-scalable route for low cost photovoltaic cells.

Efficient Cu2ZnSnSe4 (CZTSe) solar cells were fabricated with a simple, environmentally friendly, and scalable synthetic method for Cu2ZnSnS4 (CZTS) nanocrystals. CZTS nanoparticles were mechanochemically synthesized from elemental precursors on a relatively large scale (∼20 g), during which no solvents or additives were used, thus alleviating the complex process of particle synthesis. An analy...

متن کامل

Efficient solar photocatalyst based on cobalt oxide/iron oxide composite nanofibers for the detoxification of organic pollutants

A Co3O4/Fe2O3 composite nanofiber-based solar photocatalyst has been prepared, and its catalytic performance was evaluated by degrading acridine orange (AO) and brilliant cresyl blue (BCB) beneath solar light. The morphological and physiochemical structure of the synthesized solar photocatalyst was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), X-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2018