On the computation of spherical designs by a new optimization approach based on fast spherical Fourier transforms
نویسندگان
چکیده
Spherical t-designs are point sets XM := {x1, . . . ,xM} ⊂ S2 which provide quadrature rules with equal weights for the sphere which are exact for polynomials up to degree t. In this paper we consider the problem of finding numerical spherical t-designs on the sphere S2 for high polynomial degree t ∈ N. That is, we compute numerically local minimizers of a certain quadrature error At(XM ). The quadrature error At was also used for a variational characterization of spherical t-designs by Sloan and Womersley in [25]. For the minimization problem we regard several nonlinear optimization methods on manifolds, like Newton and conjugate gradient methods. We show that by means of the nonequispaced fast spherical Fourier transforms we perform gradient and Hessian evaluations in O(t2 log t+M log(1/ )) arithmetic operations, where > 0 is a prescribed accuracy. Using these methods we present numerical spherical t-designs for t ≤ 1000, even in the case M ≈ 1 2 t 2.
منابع مشابه
An Experimental Study on Blinking and Eye Movement Detection via EEG Signals for Human-Robot Interaction Purposes Based on a Spherical 2-DOF Parallel Robot
Blinking and eye movement are one of the most important abilities that most people have, even people with spinal cord problem. By using this ability these people could handle some of their activities such as moving their wheelchair without the help of others. One of the most important fields in Human-Robot Interaction is the development of artificial limbs working with brain signals. The purpos...
متن کاملEfficient Computation of Fourier Transforms on Compact Groups
This paper generalizes the fast Fourier transform algorithm to the computationof Fourier transformson compact Lie groups. The basic technique uses factorization of group elements and Gel'fand-Tsetlin bases to simplify the computations, and may be extended to treat the computation of Fourier transforms of nitely supported distributions on the group. Similar transforms may be deened on homogeneou...
متن کاملOptimization of Spherical Harmonic Transform Computations
Spherical Harmonic Transforms (SHTs) which are essentially Fourier transforms on the sphere are critical in global geopotential and related applications. Discrete SHTs are more complex to optimize computationally than Fourier transforms in the sense of the well-known Fast Fourier Transforms (FFTs). Furthermore, for analysis purposes, discrete SHTs are difficult to formulate for an optimal discr...
متن کاملFast and stable algorithms for discrete spherical Fourier transforms
In this paper, we propose an algorithm for the stable and eecient computation of Fourier expansions of square integrable functions on the unit sphere S R 3 , as well as for the evaluation of these Fourier expansions at special knots. The heart of the algorithm is an eecient realization of discrete Legendre function transforms based on a modiied and stabilized version of the Driscoll{Healy algor...
متن کاملHIERARCHICAL COMPUTATION OF HERMITE SPHERICAL INTERPOLANT
In this paper, we propose to extend the hierarchical bivariateHermite Interpolant to the spherical case. Let $T$ be an arbitraryspherical triangle of the unit sphere $S$ and let $u$ be a functiondefined over the triangle $T$. For $kin mathbb{N}$, we consider aHermite spherical Interpolant problem $H_k$ defined by some datascheme $mathcal{D}_k(u)$ and which admits a unique solution $p_k$in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 119 شماره
صفحات -
تاریخ انتشار 2011