On the k-residue of disjoint unions of graphs with applications to k-independence
نویسندگان
چکیده
The k-residue of a graph, introduced by Jelen in a 1999 paper, is a lower bound on the k-independence number for every positive integer k. This generalized earlier work by Favaron, Mahéo, and Saclé, by Griggs and Kleitman, and also by Triesch, who all showed that the independence number of a graph is at least as large as its Havel-Hakimi residue, defined by Fajtlowicz. We show here that, for every positive integer k, the k-residue of disjoint unions is at most the sum of the k-residues of the connected components considered separately, and give applications of this lemma. Our main application is an improvement on Jelen’s bound for connected graphs which have a maximum degree cut-vertex. We demonstrate constructively that, in some cases, our extensions give better approximations to the k-independence number than all known lower bounds – including bounds of Hopkins and Staton, Caro and Tuza, Favaron, Caro and Hansberg, as well as Jelen’s k-residue bound itself. Additionally, we apply this disjoint union lemma to prove a theorem for function graphs (those graphs formed by connecting vertices from a graph and its copy according to a given function) while simultaneously giving, in this context, different classes of non-trivial examples for which our new results improve on the k-residue, further motivating our first application of the lemma.
منابع مشابه
The upper domatic number of powers of graphs
Let $A$ and $B$ be two disjoint subsets of the vertex set $V$ of a graph $G$. The set $A$ is said to dominate $B$, denoted by $A rightarrow B$, if for every vertex $u in B$ there exists a vertex $v in A$ such that $uv in E(G)$. For any graph $G$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_p}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i rightarrow V_j$ or $V_j rightarrow...
متن کاملSIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM
Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$ and $A(G)$ the adjacency matrix of $G$. The signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...
متن کاملIndependence Number and Disjoint Theta Graphs
The goal of this paper is to find vertex disjoint even cycles in graphs. For this purpose, define a θ-graph to be a pair of vertices u, v with three internally disjoint paths joining u to v. Given an independence number α and a fixed integer k, the results contained in this paper provide sharp bounds on the order f(k, α) of a graph with independence number α(G) ≤ α which contains no k disjoint ...
متن کاملThe spectrum of the hyper-star graphs and their line graphs
Let n 1 be an integer. The hypercube Qn is the graph whose vertex set isf0;1gn, where two n-tuples are adjacent if they differ in precisely one coordinate. This graph has many applications in Computer sciences and other area of sciences. Inthe graph Qn, the layer Lk is the set of vertices with exactly k 1’s, namely, vertices ofweight k, 1 k n. The hyper-star graph B(n;k) is...
متن کاملSigned total Italian k-domination in graphs
Let k ≥ 1 be an integer, and let G be a finite and simple graph with vertex set V (G). A signed total Italian k-dominating function (STIkDF) on a graph G is a functionf : V (G) → {−1, 1, 2} satisfying the conditions that $sum_{xin N(v)}f(x)ge k$ for each vertex v ∈ V (G), where N(v) is the neighborhood of $v$, and each vertex u with f(u)=-1 is adjacent to a vertex v with f(v)=2 or to two vertic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 321 شماره
صفحات -
تاریخ انتشار 2014