Binary search trees, rectangles and patterns

نویسنده

  • László Kozma
چکیده

The topic of this thesis is the classical problem of searching for a sequence of keys in a binary search tree (BST), allowing the re-arrangement of the tree after every search. Our current understanding of the power and limitations of this model is incomplete, despite decades of research. The proven guarantees for the best known algorithms are far from the conjectured ones. We cannot efficiently compute an optimal sequence of rotations for serving a sequence of queries (even approximately and even with advance knowledge of the input), but we also cannot show this problem to be difficult. Sleator and Tarjan conjectured in 1983 that a simple online strategy for tree re-arrangement is as good, up to a constant factor, as the theoretical optimum, for every input. This is the famous dynamic optimality conjecture. In this thesis we make the following contributions to the topic. • We define in various ways the computational models in which BST algorithms are described and analyzed. We clarify some of the assumptions that are made in the literature (often implicitly), and survey known results about the BST model. (§ 2) • We generalize Splay, a popular BST algorithm that has several proven efficiencyproperties, and define a set of sufficient (and, in a limited sense, necessary) criteria that guarantee the efficient behavior of a BST algorithm. The results give new insights into the behavior and efficiency of Splay (a topic that is generally considered intriguing).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Profile and Height of Random Binary Search Trees

The purpose of this article is to survey recent results on distributional properties of random binary search trees. In particular we consider the profile and the height.

متن کامل

P´olya Urn Models and Connections to Random Trees: A Review

This paper reviews P´olya urn models and their connection to random trees. Basic results are presented, together with proofs that underly the historical evolution of the accompanying thought process. Extensions and generalizations are given according to chronology: • P´olya-Eggenberger’s urn • Bernard Friedman’s urn • Generalized P´olya urns • Extended urn schemes • Invertible urn schemes ...

متن کامل

Probabilistic analysis of the asymmetric digital search trees

In this paper, by applying three functional operators the previous results on the (Poisson) variance of the external profile in digital search trees will be improved. We study the profile built over $n$ binary strings generated by a memoryless source with unequal probabilities of symbols and use a combinatorial approach for studying the Poissonized variance, since the probability distribution o...

متن کامل

Performance Guarantees on a Sweep-Line Heuristic for Covering Rectilinear Polygons with Rectangles

Finding the minimum number of rectangles required to cover a rectilinear or orthogonal polygon, where overlapping of rectangles is allowed, is one of several well-known, hard geometric decomposition problems. This paper reports the first results known that give worst-case performance bounds for an approximation algorithm for this problem. It is proved that partitioning the polygon into rectangl...

متن کامل

Treemaps for Search-Tree Visualization

Large Alpha-Beta search trees generated by game-playing programs are hard to represent graphically. This paper describes how treemaps can be applied to the visualization of these trees. The principle of treemaps is presented, and difficulties of its application to the particular structure of search trees are reviewed. An original “ordered squarified” layout is proposed. It has been implemented ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016