MULTI-SCALE BASED EXTRACION OF VEGETATION FROM TERRESTRIAL LiDAR DATA FOR ASSESSING LOCAL LANDSCAPE

نویسندگان

  • T. Wakita
  • J. Susaki
چکیده

In this study, we propose a method to accurately extract vegetation from terrestrial three-dimensional (3D) point clouds for estimating landscape index in urban areas. Extraction of vegetation in urban areas is challenging because the light returned by vegetation does not show as clear patterns as man-made objects and because urban areas may have various objects to discriminate vegetation from. The proposed method takes a multi-scale voxel approach to effectively extract different types of vegetation in complex urban areas. With two different voxel sizes, a process is repeated that calculates the eigenvalues of the planar surface using a set of points, classifies voxels using the approximate curvature of the voxel of interest derived from the eigenvalues, and examines the connectivity of the valid voxels. We applied the proposed method to two data sets measured in a residential area in Kyoto, Japan. The validation results were acceptable, with F-measures of approximately 95% and 92%. It was also demonstrated that several types of vegetation were successfully extracted by the proposed method whereas the occluded vegetation were omitted. We conclude that the proposed method is suitable for extracting vegetation in urban areas from terrestrial light detection and ranging (LiDAR) data. In future, the proposed method will be applied to mobile LiDAR data and the performance of the method against lower density of point clouds will be examined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data

Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...

متن کامل

Spatial pattern of forest resources in a multifunctional landscape

Forests are usually assessed as a discrete land cover type. However, we hypothesise that the resources associated with forests show diverse spatial patterns, only partially matching current forest boundaries. Therefore tree vegetation parameters related to relevant forest resources at the landscape level were assessed for the Canton of Geneva in western Switzerland. LIDAR based digital terrain ...

متن کامل

Development of Vegetation Structure Inputs From ICESat, SRTM and MODIS Satellite Data for a Mixed Canopy Dynamic Global Terrestrial Ecosystem Model

State of the Problem Lidar remote sensing provides measurements of horizontal and vertical vegetation structure of ecosystems which will be critical for estimating global carbon storage and assessing ecosystem response to climate change and natural and anthropogenic disturbances. However, no consistent approach currently exists to derive the lidar based vegetation structure information required...

متن کامل

Considerations for Achieving Cross-Platform Point Cloud Data Fusion across Different Dryland Ecosystem Structural States

Remotely sensing recent growth, herbivory, or disturbance of herbaceous and woody vegetation in dryland ecosystems requires high spatial resolution and multi-temporal depth. Three dimensional (3D) remote sensing technologies like lidar, and techniques like structure from motion (SfM) photogrammetry, each have strengths and weaknesses at detecting vegetation volume and extent, given the instrume...

متن کامل

Remote sensing‐based landscape indicators for the evaluation of threatened‐bird habitats in a tropical forest

Avian species persistence in a forest patch is strongly related to the degree of isolation and size of a forest patch and the vegetation structure within a patch and its matrix are important predictors of bird habitat suitability. A combination of space-borne optical (Landsat), ALOS-PALSAR (radar), and airborne Light Detection and Ranging (LiDAR) data was used for assessing variation in forest ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015