Hindbrain administration of NMDA receptor antagonist AP-5 increases food intake in the rat.
نویسندگان
چکیده
Hindbrain administration of MK-801, a noncompetitive N-methyl-D-aspartate (NMDA) channel blocker, increases meal size, suggesting NMDA receptors in this location participate in control of food intake. However, dizocilpine (MK-801) reportedly antagonizes some non-NMDA ion channels. Therefore, to further assess hindbrain NMDA receptor participation in food intake control, we measured deprivation-induced intakes of 15% sucrose solution or rat chow after intraperitoneal injection of either saline vehicle or D(-)-2-amino-5-phosphonopentanoic acid (AP5), a competitive NMDA receptor antagonist, to the fourth ventricular, or nucleus of the solitary tract (NTS). Intraperitoneal injection of AP5 (0.05, 0.1, 1.0, 3.0, and 5.0 mg/kg) did not alter 30-min sucrose intake at any dose (10.7 +/- 0.4 ml, saline control) (11.0 +/- 0.8, 11.2 +/- 1.0, 11.2 +/- 1.0, 13.1 +/- 2.2, and 11.0 +/- 1.9 ml, AP5 doses, respectively). Fourth ventricular administration of both 0.2 mug (16.7 +/- 0.6 ml) and 0.4 mug (14.9 +/- 0.5 ml) but not 0.1 and 0.6 mug of AP5 significantly increased 60-min sucrose intake compared with saline (11.2 +/- 0.4 ml). Twenty-four hour chow intake also was increased compared with saline (AP5: 31.5 +/- 0.1 g vs. saline: 27.1 +/- 0.6 g). Furthermore, rats did not increase intake of 0.2% saccharin after fourth ventricular AP5 administration (AP5: 9.8 +/- 0.7 ml, vs. saline: 10.5 +/- 0.5 ml). Finally, NTS AP5 (20 ng/30 nl) significantly increased 30- (AP5: 17.2 +/- 0.7 ml vs. saline: 14.6 +/- 1.7 ml), and 60-min (AP5: 19.4 +/- 0.6 ml vs. saline: 15.5 +/- 1.4 ml) sucrose intake, as well as 24-h chow intake (AP5: 31.6 +/- 0.3 g vs. saline: 26.1 +/- 1.2 g). These results support the hypothesis that hindbrain NMDA receptors participate in control of food intake and suggest that this participation also may contribute to control of body weight over a 24-h period.
منابع مشابه
Microinjection of NMDA Receptor Agents into the Central Nucleus of the Amygdale Alters Water Intake in Rats
Objective(s) The central nucleus of the amygdala (CeA) is a forebrain structure which is important in regulation of ingestive behavior and there is direct and circumstantial evidence to indicate that some circuits involved with feeding behavior include glutamatergic elements. The present study examined whether administration of NMA (N-Methyl-DL-aspartic acid) or MK801 into the CeA altered wate...
متن کاملReduction of food intake by cholecystokinin requires activation of hindbrain NMDA-type glutamate receptors.
Intraperitoneal injection of CCK reduces food intake and triggers a behavioral pattern similar to natural satiation. Reduction of food intake by CCK is mediated by vagal afferents that innervate the stomach and small intestine. These afferents synapse in the hindbrain nucleus of the solitary tract (NTS) where gastrointestinal satiation signals are processed. Previously, we demonstrated that int...
متن کاملBlockade of hindbrain NMDA receptors containing NR2 subunits increases sucrose intake.
We have previously shown that blockade of N-methyl-d-aspartate (NMDA) receptors in the caudal brain stem delays satiation and increases food intake. NMDA receptors are heterodimers made up of distinct, but different, ion channel subunits. The NR2 subunits of the NMDA receptor contain the binding site for glutamate. About half of vagal afferents express immunoreactivity for NMDA NR2B subunit and...
متن کاملEffects of Memantine, an NMDA Antagonist, on Metabolic Syndromes in Female NMRI Mice
Introduction: The brain glutamate neurotransmitter system and its NMDA receptors in the nucleus accumbens play an important role in the incidence of the phenomena of sensitivity and addiction. The present study examined the inhibitory effect of glutamate NMDA receptors in the nucleus accumbens in response to chronic stress. Methods: After the unilateral and bilateral cannula placement in the ...
متن کاملCholinergic neurotransmission participates in increased food intake induced by NMDA receptor blockade.
MK-801, a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, enhances gastric emptying while increasing food intake. Although our previously reported results implicate the vagus in MK-801's effect on feeding, it is not clear whether vagal motor fibers participate in the feeding response. Control of gastric emptying is exerted, in part, by cholinergic vagal motor neurons. Therefore,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 290 3 شماره
صفحات -
تاریخ انتشار 2006