Stable Estimation of a Covariance Matrix Guided by Nuclear Norm Penalties

نویسندگان

  • Eric C. Chi
  • Kenneth Lange
چکیده

Estimation of a covariance matrix or its inverse plays a central role in many statistical methods. For these methods to work reliably, estimated matrices must not only be invertible but also well-conditioned. The current paper introduces a novel prior to ensure a well-conditioned maximum a posteriori (MAP) covariance estimate. The prior shrinks the sample covariance estimator towards a stable target and leads to a MAP estimator that is consistent and asymptotically efficient. Thus, the MAP estimator gracefully transitions towards the sample covariance matrix as the number of samples grows relative to the number of covariates. The utility of the MAP estimator is demonstrated in two standard applications - discriminant analysis and EM clustering - in this sampling regime.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A High-resolution DOA Estimation Method with a Family of Nonconvex Penalties

The low-rank matrix reconstruction (LRMR) approach is widely used in direction-of-arrival (DOA) estimation. As the rank norm penalty in an LRMR is NP-hard to compute, the nuclear norm (or the trace norm for a positive semidefinite (PSD) matrix) has been often employed as a convex relaxation of the rank norm. However, solving a nuclear norm convex problem may lead to a suboptimal solution of the...

متن کامل

ROP: Matrix Recovery via Rank-One Projections

Estimation of low-rank matrices is of significant interest in a range of contemporary applications. In this paper, we introduce a rank-one projection model for low-rank matrix recovery and propose a constrained nuclear norm minimization method for stable recovery of low-rank matrices in the noisy case. The procedure is adaptive to the rank and robust against small low-rank perturbations. Both u...

متن کامل

Lasso, fractional norm and structured sparse estimation using a Hadamard product parametrization

Using a multiplicative reparametrization, it is shown that a subclass of Lq penalties with q less than or equal to one can be expressed as sums of L2 penalties. It follows that the lasso and other norm-penalized regression estimates may be obtained using a very simple and intuitive alternating ridge regression algorithm. As compared to a similarly intuitive EM algorithm for Lq optimization, the...

متن کامل

Nested Sampling and its Applications in Stable Compressive Covariance Estimation and Phase Retrieval with Near-Minimal Measurements

Title of thesis: Nested Sampling and its Applications in Stable Compressive Covariance Estimation and Phase Retrieval with Near-Minimal Measurements Heng Qiao, Master of Science, 2016 Thesis directed by: Professor Piya Pal Department of Electrical and Computer Engineering Compressed covariance sensing using quadratic samplers is gaining increasing interest in recent literature. Covariance matri...

متن کامل

Covariance selection and estimation via penalised normal likelihood

We propose a nonparametric method to identify parsimony and to produce a statistically efficient estimator of a large covariance matrix. We reparameterise a covariance matrix through the modified Cholesky decomposition of its inverse or the one-step-ahead predictive representation of the vector of responses and reduce the nonintuitive task of modelling covariance matrices to the familiar task o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational statistics & data analysis

دوره 80  شماره 

صفحات  -

تاریخ انتشار 2014