Performance of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Identifying Clinical Malassezia Isolates
نویسندگان
چکیده
The genus Malassezia comprises commensal yeasts on human skin. These yeasts are involved in superficial infections but are also isolated in deeper infections, such as fungemia, particularly in certain at-risk patients, such as neonates or patients with parenteral nutrition catheters. Very little is known about Malassezia epidemiology and virulence. This is due mainly to the difficulty of distinguishing species. Currently, species identification is based on morphological and biochemical characteristics. Only molecular biology techniques identify species with certainty, but they are time-consuming and expensive. The aim of this study was to develop and evaluate a matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) database for identifying Malassezia species by mass spectrometry. Eighty-five Malassezia isolates from patients in three French university hospitals were investigated. Each strain was identified by internal transcribed spacer sequencing. Forty-five strains of the six species Malassezia furfur, M. sympodialis, M. slooffiae, M. globosa, M. restricta, and M. pachydermatis allowed the creation of a MALDI-TOF database. Forty other strains were used to test this database. All strains were identified by our Malassezia database with log scores of >2.0, according to the manufacturer's criteria. Repeatability and reproducibility tests showed a coefficient of variation of the log score values of <10%. In conclusion, our new Malassezia database allows easy, fast, and reliable identification of Malassezia species. Implementation of this database will contribute to a better, more rapid identification of Malassezia species and will be helpful in gaining a better understanding of their epidemiology.
منابع مشابه
Successful identification of clinical dermatophyte and Neoscytalidium species by matrix-assisted laser desorption ionization-time of flight mass spectrometry.
Dermatophytes are keratinolytic fungi responsible for a wide variety of diseases of glabrous skin, nails, and hair. Their identification, currently based on morphological criteria, is hindered by intraspecies morphological variability and the atypical morphology of some clinical isolates. The aim of this study was to evaluate matrix-assisted laser desorption ionization-time of flight mass spect...
متن کاملMisidentification of a Rare Species, Cryptococcus laurentii, by Commonly Used Commercial Biochemical Methods and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Systems: Challenges for Clinical Mycology Laboratories.
Forty-two putative Cryptococcus laurentii isolates identified by the Vitek 2 system were collected in China. The gold standard, internal transcribed spacer (ITS) sequencing, confirmed that only two isolates were genuine C. laurentii. Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry was able to identify the C. laurentii isolates with an expanded custom...
متن کاملApplication of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of the fastidious pediatric pathogens Aggregatibacter, Eikenella, Haemophilus, and Kingella.
The accuracy of matrix-assisted laser desorption-ionization time of flight mass spectrometry (MALDI-TOF MS) in the identification of Haemophilus, Aggregatibacter, Cardiobacterium, Eikenella, and Kingella (HACEK) species was compared to that of phenotypic methods (Remel RapID and Vitek 2). Overall, Vitek MS correctly identified more isolates, incorrectly identified fewer isolates, and failed to ...
متن کاملSource-Identifying Biomarker Ions between Environmental and Clinical Burkholderia pseudomallei Using Whole-Cell Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS)
Burkholderia pseudomallei is the causative agent of melioidosis, which is an endemic disease in Northeast Thailand and Northern Australia. Environmental reservoirs, including wet soils and muddy water, serve as the major sources for contributing bacterial infection to both humans and animals. The whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (whole-cell...
متن کاملPerformance of the Vitek MS matrix-assisted laser desorption ionization time-of-flight mass spectrometry system for identification of Gram-positive cocci routinely isolated in clinical microbiology laboratories.
We evaluated the performance of the Vitek MS for identification of Gram-positive cocci routinely isolated in clinical microbiology laboratories. With a total of 424 well-characterized isolates, the results of the Vitek MS were compared to those of conventional methods and 16S rRNA gene sequencing. The Vitek MS correctly identified 97.9 % of the isolates tested to species level. The Vitek MS cor...
متن کامل