HCN elimination from vinyl cyanide: product energy partitioning, the role of hydrogen-deuterium exchange reactions and a new pathway.
نویسندگان
چکیده
The different HCN elimination pathways from vinyl cyanide (VCN) are studied in this paper using RRKM, Kinetic Monte Carlo (KMC), and quasi-classical trajectory (QCT) calculations. A new HCN elimination pathway proves to be very competitive with the traditional 3-center and 4-center mechanisms, particularly at low excitation energies. However, low excitation energies have never been experimentally explored, and the high and low excitation regions are dynamically different. The KMC simulations carried out using singly deuterated VCN (CH2=CD-CN) at 148 kcal mol(-1) show the importance of hydrogen-deuterium exchange reactions: both DCN and HCN will be produced in any of the 1,1 and 1,2 elimination pathways. The QCT simulation results obtained for the 3-center pathway are in agreement with the available experimental results, with the 4-center results showing much more excitation of the products. In general, our results seem to be consistent with a photodissociation mechanism at 193 nm, where the molecule dissociates (at least the HCN elimination pathways) in the ground electronic state. However, our simulations assume that internal conversion is a fully statistical process, i.e., the HCN elimination channels proceed on the ground electronic state according to RRKM theory, which might not be the case. In future studies it would be of interest to include the photo-prepared electronically excited state(s) in the dynamics simulations.
منابع مشابه
A crossed beams study of the reaction of carbon atoms, C(3Pj), with vinyl cyanide, C2H3CN(X 1A')--investigating the formation of cyano propargyl radicals.
The chemical dynamics of the reaction of ground state carbon atoms, C(3Pj), with vinyl cyanide, C2H3CN(X 1A'), were examined under single collision conditions at collision energies of 29.9 and 43.9 kJ mol(-1) using the crossed molecular beams approach. The experimental studies were combined with electronic structure calculations on the triplet C4H3N potential energy surface (H. F. Su, R. I. Kai...
متن کاملDeuterium in comet C/1995 O1 (Hale-Bopp): detection of DCN.
Deuterated hydrogen cyanide (DCN) was detected in a comet, C/1995 O1 (Hale-Bopp), with the use of the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. The inferred deuterium/hydrogen (D/H) ratio in hydrogen cyanide (HCN) is (D/H)HCN = (2.3 +/- 0.4) x 10(-3). This ratio is higher than the D/H ratio found in cometary water and supports the interstellar origin of cometary ices. The observed val...
متن کاملInfluence of Deuterium-Depleted Water on the Isotope D/H Composition of Liver Tissue and Morphological Development of Rats at Different Periods of Ontogenesis
Background: This study aimed to evaluate the reaction of organism of laboratory animals on deuterium-depleted drinking diet. To assess the cell energy metabolism, the effect of a liquid medium with different deuterium contents on isolated liver mitochondria of random bred rats and Wistar rats was studied. Methods: This experimental study on the effect of deuterium-depleted drinking water (DDW) ...
متن کاملNeutral production of hydrogen isocyanide (HNC) and hydrogen cyanide (HCN) in Titan’s upper atmosphere
Aims. Following the first detection of hydrogen isocyanide (HNC) in Titan’s atmosphere, we have devised a new neutral chemical scheme for hydrogen cyanide (HCN) and HNC in the upper atmosphere of Titan. Methods. Our updated chemical scheme contains 137 compounds (with C, H, O and N elements) and 788 reactions (including 91 photolysis processes). To improve the chemistry of HNC and HCN, a carefu...
متن کاملOMP decarboxylase: phosphodianion binding energy is used to stabilize a vinyl carbanion intermediate.
Orotidine 5'-monophosphate decarboxylase (OMPDC) catalyzes the exchange for deuterium from solvent D(2)O of the C-6 proton of 1-(β-d-erythrofuranosyl)-5-fluorouracil (FEU), a phosphodianion truncated product analog. The deuterium exchange reaction of FEU is accelerated 1.8 × 10(4)-fold by 1 M phosphite dianion (HPO(3)(2-)). This corresponds to a 5.8 kcal/mol stabilization of the vinyl carbanion...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 10 شماره
صفحات -
تاریخ انتشار 2015