Self-regulated 1-butanol production in Escherichia coli based on the endogenous fermentative control
نویسندگان
چکیده
BACKGROUND As a natural fermentation product secreted by Clostridium species, bio-based 1-butanol has attracted great attention for its potential as alternative fuel and chemical feedstock. Feasibility of microbial 1-butanol production has also been demonstrated in various recombinant hosts. RESULTS In this work, we constructed a self-regulated 1-butanol production system in Escherichia coli by borrowing its endogenous fermentation regulatory elements (FRE) to automatically drive the 1-butanol biosynthetic genes in response to its natural fermentation need. Four different cassette of 5' upstream transcription and translation regulatory regions controlling the expression of the major fermentative genes ldhA, frdABCD, adhE, and ackA were cloned individually to drive the 1-butanol pathway genes distributed among three plasmids, resulting in 64 combinations that were tested for 1-butanol production efficiency. Fermentation of 1-butanol was triggered by anaerobicity in all cases. In the growth-decoupled production screening, only combinations with formate dehydrogenase (Fdh) overexpressed under FRE adhE demonstrated higher titer of 1-butanol anaerobically. In vitro assay revealed that 1-butanol productivity was directly correlated with Fdh activity under such condition. Switching cells to oxygen-limiting condition prior to significant accumulation of biomass appeared to be crucial for the induction of enzyme synthesis and the efficiency of 1-butanol fermentation. With the selection pressure of anaerobic NADH balance, the engineered strain demonstrated stable production of 1-butanol anaerobically without the addition of inducer or antibiotics, reaching a titer of 10 g/L in 24 h and a yield of 0.25 g/g glucose under high-density fermentation. CONCLUSIONS Here, we successfully engineered a self-regulated 1-butanol fermentation system in E. coli based on the natural regulation of fermentation reactions. This work also demonstrated the effectiveness of selection pressure based on redox balance anaerobically. Results obtained from this study may help enhance the industrial relevance of 1-butanol synthesis using E. coli and solidifies the possibility of strain improvement by directed evolution.
منابع مشابه
Redesigning Escherichia coli metabolism for anaerobic production of isobutanol.
Fermentation enables the production of reduced metabolites, such as the biofuels ethanol and butanol, from fermentable sugars. This work demonstrates a general approach for designing and constructing a production host that uses a heterologous pathway as an obligately fermentative pathway to produce reduced metabolites, specifically, the biofuel isobutanol. Elementary mode analysis was applied t...
متن کاملEffects of ackA, pta and poxB inhibition by antisense RNA on acetate excretion and recombinant beta interferon expression in Escherichia coli
Introduction: Escherichia coli (E.coli) is one of the most widely used hosts for the production of recombinant proteins. The main problem in getting high product yields and productivity is the accumulation of acetic acid (acetate) as an unwanted metabolic by-product. In this study, an antisense-based strategy as a metabolic engineering approach was employed to hamper the acetate excretion probl...
متن کاملA microbial platform for renewable propane synthesis based on a fermentative butanol pathway
BACKGROUND Propane (C3H8) is a volatile hydrocarbon with highly favourable physicochemical properties as a fuel, in addition to existing global markets and infrastructure for storage, distribution and utilization in a wide range of applications. Consequently, propane is an attractive target product in research aimed at developing new renewable alternatives to complement currently used petroleum...
متن کاملSystematic engineering of the central metabolism in Escherichia coli for effective production of n-butanol.
BACKGROUND Microbes have been extensively explored for production of environment-friendly fuels and chemicals. The microbial fermentation pathways leading to these commodities usually involve many redox reactions. This makes the fermentative production of highly reduced products challenging, because there is a limited NADH output from glucose catabolism. Microbial production of n-butanol appare...
متن کاملThe Expression of Human Granulocyte Macrophage Colony Stimulating Factor by Heat-Induction in Escherichia coli
A self-regulated high-copy number plasmid containing chloramphenicol resistant gene, for the production of recombinant proteins under the regulation of bacteriophage ?pL promoter, was constructed. The designed 5024 base pair expression plasmid contained a heat sensitive repressor cI857 coding gene to regulate the function of ?pL promoter under heat shock induction. Using the constructed vector,...
متن کامل